Quantum Information Processing

, Volume 14, Issue 6, pp 2077–2099 | Cite as

Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states

  • Chitra Shukla
  • Anindita Banerjee
  • Anirban PathakEmail author


Three entanglement concentration protocols (ECPs) are proposed. The first ECP and a modified version of that are shown to be useful for the creation of maximally entangled cat and GHZ-like states from their non-maximally entangled counterparts. The last two ECPs are designed for the creation of maximally entangled \((n+1)\)-qubit state \(\frac{1}{\sqrt{2}}\left( |\Psi _{0}\rangle |0\rangle +|\Psi _{1}\rangle |1\rangle \right) \) from the partially entangled \((n+1)\)-qubit normalized state \(\alpha |\Psi _{0}\rangle |0\rangle +\beta |\Psi _{1}\rangle |1\rangle ,\) where \(\langle \Psi _{1}|\Psi _{0}\rangle =0\) and \(|\alpha |\ne \frac{1}{\sqrt{2}}\). It is also shown that W, GHZ, GHZ-like, Bell and cat states and specific states from the nine SLOCC-nonequivalent families of 4-qubit entangled states can be expressed as \(\frac{1}{\sqrt{2}}\left( |\Psi _{0}\rangle |0\rangle +|\Psi _{1}\rangle |1\rangle \right) \), and consequently, the last two ECPs proposed here are applicable to all these states. Quantum circuits for the implementation of the proposed ECPs are provided, and it is shown that the proposed ECPs can be realized using linear optics. The efficiency of the ECPs is studied using a recently introduced quantitative measure (Sheng et al., Phys Rev A 85:012307, 2012). Limitations of the measure are also reported.


Entanglement concentration protocol (ECP) Quantum circuit Optical implementation of ECP 



AP thanks Department of Science and Technology (DST), India, for support provided through the DST Project No. SR/S2/LOP-0012/2010, and he also acknowledges the supports received from the Projects CZ.1.05/2.1.00/03.0058 and CZ.1.07/2.3.00/20.0017 of the Ministry of Education, Youth and Sports of the Czech Republic. The authors also thank Dr. Alessio Avella for his inputs on the possibility of the experimental realizations of the proposed protocols.


  1. 1.
    Eisert, J., Jacobs, K., Papadopoulos, P., Plenio, M.B.: Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000)ADSGoogle Scholar
  2. 2.
    Gupta, M., Pathak, A.: A scheme for distributed quantum search through simultaneous state transfer mechanism. Ann. Phys. 16, 791–797 (2007)zbMATHGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSGoogle Scholar
  7. 7.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSGoogle Scholar
  8. 8.
    Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg-Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Info. 10, 1241009 (2012)MathSciNetGoogle Scholar
  9. 9.
    Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)ADSGoogle Scholar
  10. 10.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)ADSGoogle Scholar
  11. 11.
    Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999)ADSGoogle Scholar
  12. 12.
    Bandyopadhyay, S.: Qubit-and entanglement-assisted optimal entanglement concentration. Phys. Rev. A 62, 032308 (2000)ADSGoogle Scholar
  13. 13.
    Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)ADSGoogle Scholar
  14. 14.
    Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)ADSGoogle Scholar
  15. 15.
    Sheng, Y.-B., Zhou, L., Zhao, S.-M., Zheng, B.-Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)ADSGoogle Scholar
  16. 16.
    Sheng, Y.-B., Zhou, L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776–1820 (2013)CrossRefADSzbMATHMathSciNetGoogle Scholar
  17. 17.
    Gu, Y.-J., Li, W.-D., Guo, G.-C.: Protocol and quantum circuits for realizing deterministic entanglement concentration. Phys. Rev. A 73, 022321 (2006)ADSGoogle Scholar
  18. 18.
    Deng, F.-G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)ADSGoogle Scholar
  19. 19.
    Sheng, Y.-B., Zhou, L., Zhao, S.-M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)ADSGoogle Scholar
  20. 20.
    He, L.-Y., Cao, C., Wang, C.: Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system. Opt. Commun. 298–299, 260–266 (2013)Google Scholar
  21. 21.
    Choudhury, B.S., Dhara, A.: A three-qubit state entanglement concentration protocol assisted by two-qubit systems. Int. J. Theor. Phys. 52, 3965–3969 (2013)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Zhou, L., Wang, X.-F., Sheng, Y.-B.: Efficient entanglement concentration for arbitrary less-entangled N-atom GHZ state. Int. J. Theor. Phys. 53, 1752–1766 (2014)zbMATHGoogle Scholar
  23. 23.
    Choudhury, B.S., Dhara, A.: An entanglement concentration protocol for cluster states. Info. Process. 12, 2577–2585 (2013)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Xu, T.-T., Xiong, W., Ye, L.: An efficient scheme for entanglement concentration of arbitrary four-photon states. Int. J. Theor. Phys. 52, 2981–2990 (2013)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Zhao, S.-Y., Liu, J., Zhou, L., Sheng, Y.-B.: Two-step entanglement concentration for arbitrary electronic cluster state. Quantum Info. Process. 12, 3633–3647 (2013)ADSzbMATHMathSciNetGoogle Scholar
  26. 26.
    Zhou, L., Sheng, Y.-B., Cheng, W.-W., Gong, L.-Y., Zhao, S.-M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Info. Process. 12, 1307–1320 (2013)ADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    Zhao, Z., Yang, T., Chen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)ADSGoogle Scholar
  28. 28.
    Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003)CrossRefADSGoogle Scholar
  29. 29.
    Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary single-photon multimode W state. J. Opt. Soc. Am. B 30, 71–78 (2013)ADSGoogle Scholar
  30. 30.
    Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)ADSGoogle Scholar
  31. 31.
    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two ways. Phys. Rev. A 62, 062314 (2000)ADSMathSciNetGoogle Scholar
  32. 32.
    Banerjee, A., Patel, K., Pathak, A.: Comment on quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 50, 507–510 (2011)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518–527 (2013)ADSMathSciNetGoogle Scholar
  34. 34.
    Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2009)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Verstraete, F., Dehaene, J., Moor, B.De, Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)ADSMathSciNetGoogle Scholar
  36. 36.
    Chterental, O., Djokovic, D.Z.: Normal forms and tensor ranks of pure states of four qubits. arXiv:quant-ph/0612184
  37. 37.
    Borsten, L., Dahanayake, D., Duff, M.J., Marrani, A., Rubens, W.: Four-qubit entanglement classification from string theory. Phys. Rev. Lett. 105, 100507 (2010)ADSMathSciNetGoogle Scholar
  38. 38.
    Gour, G., Wallach, N.R.: All maximally entangled four-qubit states. J. Math. Phys. 51, 112201 (2010)ADSMathSciNetGoogle Scholar
  39. 39.
    Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)ADSGoogle Scholar
  40. 40.
    Romero, J.L., Roa, L., Retamal, J.C., Saavedra, C.: Entanglement purification in cavity QED using local operations. Phys. Rev. A 65, 052319 (2002)ADSGoogle Scholar
  41. 41.
    Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Info Process. 12, 2087–2101 (2013)ADSzbMATHGoogle Scholar
  42. 42.
    Ren, B.C., Wei, H.R., Li, T., Hua, M., Deng, F.G.: Optimal multipartite entanglement concentration of electron-spin states based on charge detection and projection measurements. Quantum Info. Process. 13, 825–838 (2014)ADSzbMATHMathSciNetGoogle Scholar
  43. 43.
    Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)ADSGoogle Scholar
  44. 44.
    Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)ADSGoogle Scholar
  45. 45.
    Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Info. Process. 12, 1885–1895 (2013)ADSzbMATHGoogle Scholar
  46. 46.
    Sheng, Y.B., Liu, J., Zhao, S.Y., Zhou, L.: Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin. Sci. Bull. 58, 3507–3513 (2013)Google Scholar
  47. 47.
    Samal, J.R., Gupta, M., Panigrahi, P.K., Kumar, A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B 43, 095508 (2010)ADSGoogle Scholar
  48. 48.
    Černoch, A., Soubusta, J., Bartůšková, L., Dušek, M., Fiurášek, J.: Experimental realization of linear-optical partial SWAP gates. Phys. Rev. Lett. 100, 180501 (2008)Google Scholar
  49. 49.
    Zhu, M.Z., Ye, L.: Implementation of SWAP gate and Fredkin gate using linear optical elements. J. Quantum Info. 11, 1350031 (2013)MathSciNetGoogle Scholar
  50. 50.
    Wang, H.F., Shao, X.Q., Zhao, Y.F., Zhang, S., Yeon, K.H.: Linear optical implementation of an ancilla-free quantum SWAP gate. Phys. Scr. 81, 015011 (2010)ADSGoogle Scholar
  51. 51.
    Fiorentino, M., Kim, T., Wong, F.N.: Single-photon two-qubit SWAP gate for entanglement manipulation. Phys. Rev. A 72, 012318 (2005)ADSGoogle Scholar
  52. 52.
    Zheng, A.S., Cheng, Y.J., Liu, J.B., Li, T.P.: Realization of the Greenberg-Horne-Zeilinger (GHZ) state and SWAP gate with superconducting quantum-interference devices in a cavity via adiabatic passage. Mod. Phys. Lett. B 22, 1507–1513 (2008)ADSzbMATHGoogle Scholar
  53. 53.
    Zheng, X.J., Fang, M.F., Liao, X.P., Cai, J.W.: Quantum logic gates with a two-level trapped ion in a high-finesse cavity beyond the Lamb-Dicke limit. J. Phys. B 40, 507 (2007)ADSGoogle Scholar
  54. 54.
    O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264 (2003)CrossRefADSGoogle Scholar
  55. 55.
    Crespi, A., et al.: Integrated photonic quantum gates for polarization qubits. Nature Commun. 2, 566 (2011)ADSGoogle Scholar
  56. 56.
    Schmidt-Kaler, F., et al.: Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)CrossRefADSGoogle Scholar
  57. 57.
    Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790–3796 (2013)MathSciNetGoogle Scholar
  58. 58.
    Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337–1344 (2013)ADSzbMATHMathSciNetGoogle Scholar
  59. 59.
    Pradhan, B., Agrawal, P., Pati, A.K.: Teleportation and superdense coding with genuine quadripartite entangled states. arXiv:0705.1917v1 (quant-ph)
  60. 60.
    Xiang, S.-H., Shi, Z.-G., Wen, W., Lu, D.-H., Zhu, X.-X., Song, K.-H.: Concentration scheme for partially entangled photon states via entanglement reflector and no Bell-state analysis. Opt. Commun. 284, 2402–2407 (2011)ADSGoogle Scholar
  61. 61.
    Lee, S.-W., Jeong, H.: Bell-state measurement and quantum teleportation using linear optics: two-photon pairs, entangled coherent states, and hybrid entanglement. arXiv:1304.1214 (quant-ph)
  62. 62.
    Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)ADSGoogle Scholar
  63. 63.
    Kwiat, P.G., Waks, E., White, A.G., Appelbaum, I., Eberhard, P.H.: Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773 (1999)ADSGoogle Scholar
  64. 64.
    Hadfield, R.H.: Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696 (2009)ADSGoogle Scholar
  65. 65.
    Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011)ADSGoogle Scholar
  66. 66.
    Sabın, C., Garca-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)ADSMathSciNetGoogle Scholar
  67. 67.
    Eltschka, C., Osterloh, A., Siewert, J., Uhlmann, A.: Three-tangle for mixtures of generalized GHZ and generalized W states. New J. Phys. 10, 043014 (2008)ADSGoogle Scholar
  68. 68.
    Wootters, W.K.: The rebit three-tangle and its relation to two-qubit entanglement. arXiv:1402.2219v1 (quant-ph)
  69. 69.
    Yu, C.-S., Song, H.-S.: Free entanglement measure of multiparticle quantum states. Phys. Lett. A 330, 377–383 (2004)ADSzbMATHMathSciNetGoogle Scholar
  70. 70.
    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)ADSGoogle Scholar
  71. 71.
    Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)ADSMathSciNetGoogle Scholar
  72. 72.
    Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619–1633 (1998)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chitra Shukla
    • 1
  • Anindita Banerjee
    • 2
  • Anirban Pathak
    • 1
    • 3
    Email author
  1. 1.Jaypee Institute of Information TechnologyNoidaIndia
  2. 2.Department of Physics and Center for Astroparticle Physics and Space ScienceBose InstituteKolkataIndia
  3. 3.RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations