Quantum Information Processing

, Volume 14, Issue 6, pp 1869–1887 | Cite as

Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity

  • Muhammad Waseem
  • Muhammad Irfan
  • Shahid Qamar


We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch–Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.


Multi-qubit quantum gates Cavity QED Solid-state qubit Superconducting quantum interference devices (SQUIDs)  Superconducting resonator 


  1. 1.
    Shor, W.P.: In proceedings of the 35th annual symposium on foundations of computer science (IEE Computer society press, Santa Fe, NM, 1994)Google Scholar
  2. 2.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a Haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)CrossRefADSGoogle Scholar
  3. 3.
    Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74(20), 4087–4090 (1995)CrossRefADSMATHMathSciNetGoogle Scholar
  4. 4.
    DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009)CrossRefADSGoogle Scholar
  5. 5.
    Bialczak, R.C., Ansmann, M., Hofheinz, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Wang, H., Wenner, J., Steffen, M., Cleland, A.N., Martinis, J.M.: Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys. 6, 409413 (2010)CrossRefGoogle Scholar
  6. 6.
    Yamamoto, T., Neeley, M., Lucero, E., Bialczak, R.C., Kelly, J., Lenander, M., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Cleland, A.N., Martinis, J.M.: Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits. Phys. Rev. B 82(18), 184515 (2010)CrossRefADSGoogle Scholar
  7. 7.
    Plantenberg, J.H., de Groot, P.C., Harmans, C.J.P.M., Mooij, J.E.: Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature (London) 447, 836–839 (2007)CrossRefADSGoogle Scholar
  8. 8.
    Leek, P.J., Filipp, S., Maurer, P., Baur, M., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Wallraff, A.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79(18), 180511(R) (2009)CrossRefADSGoogle Scholar
  9. 9.
    Mottonen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 93(13), 130502 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Monz, T., Kim, K., Hänsel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102(4), 040501 (2009)CrossRefADSGoogle Scholar
  11. 11.
    Fedorov, A., et al.: Implementation of a Toffoli gate with superconducting circuits. Nat. Phys. 481, 170172 (2011)Google Scholar
  12. 12.
    Zubairy, M.S., Kim, M., Scully, M.O.: Cavity-QED-based quantum phase gate. Phys. Rev. A 68(3), 033820 (2003)CrossRefADSGoogle Scholar
  13. 13.
    Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M.D., Blakestad, R.B., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri, R., Wineland, D.J.: Realization of quantum error correction. Nature (London) 432, 602–605 (2004)CrossRefADSGoogle Scholar
  14. 14.
    Zubairy, M.S., Matsko, A.B., Scully, M.O.: Resonant enhancement of high-order optical nonlinearities based on atomic coherence. Phys. Rev. A 65(4), 043804 (2002)CrossRefADSGoogle Scholar
  15. 15.
    Waseem, M., Ahmed, R., Irfan, M., Qamar, S.: Three-qubit Grovers algorithm using superconducting quantum interference devices in cavity-QED. Quantum Inf. Process. 12, 3649 (2013)CrossRefADSMATHMathSciNetGoogle Scholar
  16. 16.
    ŠaŠura, M., Buzek, V.: Multiparticle entanglement with quantum logic networks: application to cold trapped ions. Phys. Rev. A 64(1), 012305 (2001)CrossRefADSGoogle Scholar
  17. 17.
    Gaitan, F.: Quantum Error Correction and Fault Tolerant Quantum Computing. CRC Press, Boca Raton (2008)CrossRefMATHGoogle Scholar
  18. 18.
    Beth, T., Rötteler, M.: Quantum Information, vol. 173, Ch. 4, p. 96. Springer, Berlin (2001)CrossRefGoogle Scholar
  19. 19.
    Braunstein, S.L., Buzek, V., Hillery, M.: Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit. Phys. Rev. A 63(5), 052313 (2001)CrossRefADSGoogle Scholar
  20. 20.
    Chang, J.T., Zubairy, M.S.: Three-qubit phase gate based on cavity quantum electrodynamics. Phys. Rev. A 77(1), 012329 (2008)CrossRefADSGoogle Scholar
  21. 21.
    Yang, C.P., Han, S.: n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator. Phys. Rev. A 72(3), 032311 (2005)CrossRefADSGoogle Scholar
  22. 22.
    Yang, C.P., Han, S.: Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED. Phys. Rev. A 73(3), 032317 (2006)CrossRefADSGoogle Scholar
  23. 23.
    Waseem, M., Irfan, M., Qamar, S.: Multiqubit quantum phase gate using four-level superconducting quantum interference devices coupled to superconducting resonator. Physica C 477, 24–31 (2012)CrossRefADSGoogle Scholar
  24. 24.
    Yang, C.P., Zheng, S.B., Nori, F.: Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys. Rev. A 82(6), 062326 (2010)CrossRefADSGoogle Scholar
  25. 25.
    Yang, C.P., Liu, Y.X., Nori, F.: Phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys. Rev. A 81(6), 062323 (2010)CrossRefADSGoogle Scholar
  26. 26.
    You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)CrossRefGoogle Scholar
  27. 27.
    Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature (London) 453, 1031–1042 (2008)CrossRefADSGoogle Scholar
  28. 28.
    Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Katz, N., Lucero, E., O’Connell, A.D., Wang, H., Cleland, A.N., Martinis, J.M.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523–526 (2008)CrossRefGoogle Scholar
  29. 29.
    Zagoskin, A.M., Ashhab, S., Johansson, J.R., Nori, F.: Quantum two-level systems in Josephson junctions as naturally formed qubits. Phys. Rev. Lett. 97(7), 077001 (2006)CrossRefADSGoogle Scholar
  30. 30.
    Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95(8), 087001 (2005)CrossRefADSGoogle Scholar
  31. 31.
    Yang, C.P., Chu, S.I., Han, S.: Simplified realization of two-qubit quantum phase gate with four-level systems in cavity QED. Phys. Rev. A 70(4), 044303 (2004)CrossRefADSGoogle Scholar
  32. 32.
    Wang, L., Puri, R.R., Eberly, J.H.: Coupled-channel cavity QED model and exact solutions. Phys. Rev. A 46(11), 71927209 (1992)Google Scholar
  33. 33.
    Zheng, S.B., Guo, G.C.: Generation of Schrdinger cat states via the Jaynes–Cummings model with large detuning. Phys. Lett. A 223(5), 332336 (1996)MathSciNetGoogle Scholar
  34. 34.
    Scully, M.O., Zubairy, M.S.: Quantum Optics, 1st edn. Cambridge University Press, UK (1997)CrossRefGoogle Scholar
  35. 35.
    Nielsen, M.A., Chuang, I.I.: Quantum Computing and Quantum Information. Cambridge University Press, Cambridge, England (2001)Google Scholar
  36. 36.
    Diao, Z., Zubairy, M.S., Chen, G.: A quantum circuit design for Grover Algorithm. Z. Naturforsch. A: Phys. Sci. 57a, 701–708 (2002)ADSGoogle Scholar
  37. 37.
    Deutsch, D., Josza, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553–558 (1992)CrossRefADSMATHGoogle Scholar
  38. 38.
    DiCarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010)CrossRefADSGoogle Scholar
  39. 39.
    Leek, P.J., Baur, M., Fink, J.M., Bianchetti, R., Steffen, L., Filipp, S., Wallraff, A.: Cavity quantum electrodynamics with separate photon storage and qubit readout modes. Phys. Rev. Lett. 104(10), 100504 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Muhammad Waseem
    • 1
    • 2
  • Muhammad Irfan
    • 1
    • 3
  • Shahid Qamar
    • 1
  1. 1.Department of Physics and Applied MathematicsPakistan Institute of Engineering and Applied SciencesNilore, IslamabadPakistan
  2. 2.Institute for Laser ScienceUniversity of Electro-CommunicationsTokyoJapan
  3. 3.Kavli Institute of NanoscienceDelft University of TechnologyGA DelftThe Netherlands

Personalised recommendations