Advertisement

Quantum Information Processing

, Volume 14, Issue 4, pp 1469–1486 | Cite as

Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state

  • Tian-Yu Ye
Article

Abstract

In this paper, using the quantum entanglement swapping technologies under the collective-dephasing noise and the collective-rotation noise, two robust quantum dialogue protocols are proposed, respectively. The logical Bell states are used as the traveling states to combat the collective noise. The auxiliary logical Bell state is shared privately between two participants through the manner of direct transmission first. After encoded with the receiver’s secret messages, it swaps entanglement with its adjacent logical Bell state. In this way, the information leakage problem is avoided. Moreover, Eve’s active attacks can be detected with the help of decoy photon technology. For decoding, the Bell state measurements rather than the four-qubit joint measurements are needed.

Keywords

Quantum dialogue (QD) Entanglement swapping Logical Bell state Collective-dephasing noise Collective-rotation noise Information leakage 

Notes

Acknowledgments

The author would like to thank the anonymous reviewers for their valuable suggestions that help enhancing the quality of this paper. Funding by the National Natural Science Foundation of China (Grant Nos. 61402407, 11375152) is also gratefully acknowledged.

References

  1. 1.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)CrossRefADSGoogle Scholar
  2. 2.
    Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)CrossRefADSGoogle Scholar
  3. 3.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)CrossRefADSGoogle Scholar
  4. 4.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)CrossRefADSGoogle Scholar
  5. 5.
    Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)CrossRefADSGoogle Scholar
  6. 6.
    Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253, 15–20 (2005)CrossRefADSGoogle Scholar
  7. 7.
    Li, X.H., Li, C.Y., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–2153 (2007)CrossRefADSGoogle Scholar
  8. 8.
    Chen, X.B., Wen, Q.Y., Guo, F.Z., Sun, Y., Xu, G., Zhu, F.C.: Controlled quantum secure direct communication with W state. Int. J. Quantum Inf. 6, 899–906 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20, 100309 (2011)CrossRefADSGoogle Scholar
  10. 10.
    Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur. Phys. J. D 67, 30–37 (2013)CrossRefADSGoogle Scholar
  12. 12.
    Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)CrossRefADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    Zhang, Z.J., Man, Z.X.: Secure direct bidirectional communication protocol using the Einstein–Podolsky–Rosen pair block. http://arxiv.org/pdf/quant-ph/0403215.pdf (2004)
  14. 14.
    Zhang, Z.J., Man, Z.X.: Secure bidirectional quantum communication protocol without quantum channel. http://arxiv.org/pdf/quant-ph/0403217.pdf (2004)
  15. 15.
    Man, Z.X., Zhang, Z.J., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22(1), 22–24 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1–2), 67–70 (2006)CrossRefADSGoogle Scholar
  17. 17.
    Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)CrossRefADSGoogle Scholar
  18. 18.
    Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chin. Phys. 15(7), 1418–1420 (2006)CrossRefADSGoogle Scholar
  19. 19.
    Man, Z.X., Xia, Y.J., Nguyen, B.A.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B At. Mol. Opt. Phys. 39(18), 3855–3863 (2006)CrossRefADSGoogle Scholar
  20. 20.
    Man, Z.X., Xia, Y.J.: Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin. Phys. Lett. 24(1), 15–18 (2007)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24(1), 19–22 (2007)CrossRefADSzbMATHGoogle Scholar
  22. 22.
    Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons. Sci. China. Ser. G Phys. Mech. Astron. 50(5), 558–562 (2007)CrossRefADSGoogle Scholar
  23. 23.
    Shan, C.J., Liu, J.B., Cheng, W.W., Liu, T.K., Huang, Y.X., Li, H.: Bidirectional quantum secure direct communication in driven cavity QED. Mod. Phys. Lett. B 23(27), 3225–3234 (2009)CrossRefADSzbMATHGoogle Scholar
  24. 24.
    Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum secure direct communication by using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)CrossRefADSGoogle Scholar
  25. 25.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Comment on: “Three-party quantum secure direct communication based on GHZ states”. Phys. Lett. A 372(18), 3333–3336 (2008)CrossRefADSzbMATHMathSciNetGoogle Scholar
  26. 26.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G Phys. Mech. Astron. 51(5), 559–566 (2008)CrossRefADSGoogle Scholar
  27. 27.
    Tan, Y.G., Cai, Q.Y.: Classical correlation in quantum dialogue. Int. J. Quantum Inf. 6(2), 325–329 (2008)CrossRefGoogle Scholar
  28. 28.
    Shi, G.F.: Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Opt. Commun. 283(24), 5275–5278 (2010)CrossRefADSGoogle Scholar
  29. 29.
    Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)CrossRefADSGoogle Scholar
  30. 30.
    Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Bidirectional quantum secure communication based on a shared private Bell state. Opt. Commun. 282(12), 2460–2463 (2009)CrossRefADSGoogle Scholar
  31. 31.
    Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010)CrossRefADSGoogle Scholar
  32. 32.
    Ye, T.Y.: Large payload bidirectional quantum secure direct communication without information leakage. Int. J. Quantum Inf. 11(5), 1350051 (2013)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Ye, T.Y., Jiang, L.Z.: Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state. Phys. Scr. 89(1), 015103 (2014)CrossRefADSGoogle Scholar
  34. 34.
    Ye, T.Y.: Quantum secure dialogue with quantum encryption. Commun. Theor. Phys. 62(3), 338–342 (2014)CrossRefADSGoogle Scholar
  35. 35.
    Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China-Phys. Mech. Astron. 57(7), 1238–1243 (2014)CrossRefADSGoogle Scholar
  36. 36.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)CrossRefADSGoogle Scholar
  37. 37.
    Li, X.H., Zhao, B.K., Sheng, Y.B., et al.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inf. 7(8), 1479–1489 (2009)CrossRefzbMATHGoogle Scholar
  38. 38.
    Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)CrossRefADSGoogle Scholar
  39. 39.
    Boileau, J.C., Gottesman, D., Laflamme, R., et al.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004)CrossRefADSGoogle Scholar
  40. 40.
    Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A 361, 233–238 (2006)CrossRefADSGoogle Scholar
  41. 41.
    Gu, B., Pei, S.X., Song, B., Zhong, K.: Deterministic secure quantum communication over a collective-noise channel. Sci. China Ser. G Phys. Mech. Astron. 52(12), 1913–1918 (2009)CrossRefADSGoogle Scholar
  42. 42.
    Gu, B., Mu, L.L., Ding, L.G., Zhang, C.Y., Li, C.Q.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283, 3099–3103 (2010)CrossRefADSGoogle Scholar
  43. 43.
    Yang, C.W., TSAI, C.W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. Mech. Astron. 54(3), 496–501 (2011)CrossRefADSGoogle Scholar
  44. 44.
    Gu, B., Zhang, C.Y., Cheng, G.S., Huang, Y.G.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)CrossRefADSGoogle Scholar
  45. 45.
    Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12, 2131–2142 (2013)CrossRefADSzbMATHMathSciNetGoogle Scholar
  46. 46.
    Lin, J., Hwang, T.: Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf. Process. 12, 1089–1107 (2013)CrossRefADSzbMATHMathSciNetGoogle Scholar
  47. 47.
    Ye, T.Y.: Information leakage resistant quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 57(12), 2266–2275 (2014)CrossRefADSGoogle Scholar
  48. 48.
    Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)CrossRefADSGoogle Scholar
  49. 49.
    Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)CrossRefADSGoogle Scholar
  50. 50.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)CrossRefADSzbMATHGoogle Scholar
  51. 51.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)CrossRefADSGoogle Scholar
  52. 52.
    Shannon, C.E.: Communication theory of secrecy system. Bell Syst. Tech. J. 28, 656–715 (1949)CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Information and Electronic EngineeringZhejiang Gongshang UniversityHangzhouPeople’s Republic of China

Personalised recommendations