Advertisement

Quantum Information Processing

, Volume 14, Issue 3, pp 1103–1116 | Cite as

Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state

  • Dong-fen LiEmail author
  • Rui-jin Wang
  • Feng-li Zhang
  • Fu-hu Deng
  • Edward Baagyere
Article

Abstract

In this paper, we proposed a scheme for quantum information splitting of arbitrary two-qubit by using four-qubit cluster state and Bell-state as quantum channel. The splitter (Alice) and two receivers (Bob and Charlie) safely share a four-qubit cluster and Bell-state as quantum channel. Then, the sender Alice first performs Bell-state measurement (BSMs) on her qubit pairs, respectively, and tells the results to the receiver Bob and Charlie via a classical channel. But it is impossible for Bob to reconstruct the original state with local operations without help from Charlie. If Charlie allows Bob to reconstruct the original state information, he also needs to perform BSMs on his qubits and tell Bob the measurement result. Using the measurement results from Alice and Charlie, Bob can reconstruct the original state by applying the appropriate unitary operation. The scheme is tested against various attack scenarios such as eavesdropping attack, eavesdropping in the presence of a malicious attacker and even in the presence of a dishonest agent and found to be secure in all these cases. In addition, the deterministic quantum information splitting of arbitrary two-qubit state in cavity quantum electrodynamics is implemented.

Keywords

Quantum information Quantum information splitting  Arbitrary two-qubit state Bell-state measurements Quantum electrodynamics 

Notes

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities (ZYGX2011J064). This work is also supported partly by the National Nature Science Foundation of China under Grant (Nos. 60903157 and 61133016), and the National High Technology Joint Research Program of China (863 Program, Grant No. 2011AA010706).

References

  1. 1.
    Cao, Z.L., Yang, M., Guo, G.C.: The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED. Phys. Lett. A 308(5), 349–354 (2003)CrossRefADSzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bennett, C.H.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    Rao, D.D.B., Ghosh, S., Panigrahi, P.K.: Generation of entangled channels for perfect teleportation using multielectron quantum dots. Phys. Rev. A 78(4), 042328 (2008)CrossRefADSGoogle Scholar
  4. 4.
    Ye, L., Guo, G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71(3), 034304 (2005)CrossRefADSGoogle Scholar
  5. 5.
    Samal, J.R., Gupta, M., Panigrahi, P.K., Kumar, A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B At. Mol. Opt. Phys. 43, 095508 (2010)CrossRefADSGoogle Scholar
  6. 6.
    Prasath, E.S., Muralidharan, S., Mitra, C., Panigrahi, P.K.: Multipartite entangled magnon states as quantum communication channels. Quantum Inf. Process. 11(2), 397–410 (2012)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Efficient symmetric five-party quantum state sharing of an arbitrary m-qubit state. Int. J. Theor. Phys. 50(11), 3329–3336 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(10), 2592–2599 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10(1), 53–61 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state. Quantum Inf. Process. 11(2), 563–569 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Hou, K., Liu, G.H., Zhang, X.X., Sheng, S.Q.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit steta using multiqubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multi-qubit state using non-maximally entangled GHZ states. Eur. Phys. J. D 42(2), 333–340 (2007)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)CrossRefADSGoogle Scholar
  16. 16.
    Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)CrossRefADSGoogle Scholar
  17. 17.
    Menon, J.V., Paul, N., Karumanchi, S., Muralidhara, S., Panigrah, P.K.: Quantum Tasks Using Six Qubit Cluster States. arXiv:0906.3874(2009)
  18. 18.
    Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of Quantum Information Using N-Qubit Linear Cluster States. arXiv:0904.0563v2(2010)
  19. 19.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Zhang, B.B., Liu, Y.: Economic and deterministic quantum teleportation of arbitrary bipartite pure and mixed state with shared cluster entanglement. Int. J. Theor. Phys. 48, 2644–2651 (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)CrossRefADSGoogle Scholar
  22. 22.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)CrossRefADSGoogle Scholar
  23. 23.
    Cheung, C.V., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)CrossRefADSGoogle Scholar
  24. 24.
    Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six-qubit cluster states. Quantum Inf. Process. 10, 619–632 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of quantum information using N-qubit linear cluster states. Opt. Commun. 284(4), 1082–1085 (2011)CrossRefADSGoogle Scholar
  26. 26.
    Ben-Or, M., Crpeau, C., Gottesman, D., Hassidim, A., Smith, A.: In: Proceedings of 47th Annual IEEE Symposium on the Foundations of Computer Science (FOCS06), pp. 249–260. IEEE Press, New York (2006)Google Scholar
  27. 27.
    Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(10), 2592–2599 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Wiesner, S.: SIGACT news. Conjug. Coding 15, 78–88 (1983)Google Scholar
  29. 29.
    Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)CrossRefADSGoogle Scholar
  30. 30.
    Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination quantum teleportation. Nature 430, 54 (2004)CrossRefADSGoogle Scholar
  31. 31.
    Deng, F.G., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)CrossRefADSGoogle Scholar
  32. 32.
    Yin, X.F., Liu, Y.M., Zhang, W., Zhang, Z.J.: Simplified four-qubit cluster state for splitting arbitrary single-qubit information. Commun. Theor. Phys. 53, 49–53 (2010)CrossRefADSzbMATHGoogle Scholar
  33. 33.
    Nie, Y.Y., Li, Y.H., Lin, J.C., Sang, M.H.: Quantum state sharing of an arbitrary four-qubit GHZ-type state by using a four-qubit cluster state. Quantum Inf. Process. 10, 603–608 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Yang, C.P., Chu, S.I., Han, S.Y.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70(2), 022329 (2004)CrossRefADSGoogle Scholar
  35. 35.
    Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A 42(11), 115303 (2009)CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75(5), 052306 (2007)CrossRefADSGoogle Scholar
  37. 37.
    Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)CrossRefADSGoogle Scholar
  38. 38.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72(4), 044301 (2005)CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283(9), 1961–1965 (2010)CrossRefADSGoogle Scholar
  40. 40.
    Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)CrossRefADSGoogle Scholar
  41. 41.
    Wang, X.W., Peng, Z.H., Jia, C.X., Wang, Y.H., Liu, X.J.: Scheme for implementing controlled teleportation and dense coding with genuine pentaqubit entangled state in cavity QED. Opt. Commun. 282(4), 670–673 (2009)CrossRefADSGoogle Scholar
  42. 42.
    Li, D.F., Wang, R.J., Zhang, F.L.: (2014) Quantum information splitting of a Two-qubit Bell state using a four-qubit Entangled state. Chin. Phys. C (1), 010601 (accepted)Google Scholar
  43. 43.
    Li, D.F., Wang, R.J., Zhang, F.L.: Quantum information splitting of arbitrary three-qubit state by using four-qubit cluster state and GHZ-state. Int. J. Theor. Phys. (published online), 1–12 (2014)Google Scholar
  44. 44.
    Li, D.F., Wang, R.J., Zhang, F.L.: Quantum information splitting of arbitrary three-qubit state by using seven-qubit entangled state. Int. J. Theor. Phys. (published online), 1–8 (2014)Google Scholar
  45. 45.
    Wang, X.P., Sang, M.H.: Splitting an arbitrary three-qubit state by using seven-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 53, 1064–1069 (2014)CrossRefzbMATHGoogle Scholar
  46. 46.
    Bai, M.Q., Mo, Z.W.: Hierarchical quantum information splitting with eight-qubit cluster states. Quantum Inf. Process. 12, 1053–1064 (2013)CrossRefADSzbMATHMathSciNetGoogle Scholar
  47. 47.
    Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49, 2592–2599 (2010)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Dong-fen Li
    • 1
    Email author
  • Rui-jin Wang
    • 1
  • Feng-li Zhang
    • 1
  • Fu-hu Deng
    • 1
  • Edward Baagyere
    • 1
  1. 1.School of Computer Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations