Quantum Information Processing

, Volume 14, Issue 3, pp 1117–1150 | Cite as

Analyses of the transmission of the disorder from a disturbed environment to a spin chain

Article

Abstract

We study spin chains submitted to disturbed kick trains described by classical dynamical processes. The spin chains are described by Heisenberg and Ising models. We consider decoherence, entanglement and relaxation processes induced by the kick irregularity in the multipartite system (the spin chain). We show that the different couplings transmit the disorder along the chain differently and also to each spin density matrix with different efficiencies. In order to analyze and to interpret the observed effects, we use a semi-classical analysis across the Husimi distribution. It consists to consider the classical spin orientation movements. A possibility of conserving the order into the spin chain is finally analyzed.

Keywords

Spin chain Heisenberg coupling Ising-Z coupling  Ising-X coupling Decoherence Entanglement 

References

  1. 1.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)MATHGoogle Scholar
  2. 2.
    Lages, J., Dobrovitski, V.V., Katsnelson, M.I., De Raedt, H.A., Harmon, B.N.: Decoherence by a chaotic many-spin bath. Phys. Rev.Rev. E 72, 026225 (2005)Google Scholar
  3. 3.
    Gedik, Z.: Spin bath decoherence of quantum entanglement. Solid State Commun. 138, 82 (2006)Google Scholar
  4. 4.
    Lages, J., Shepelyansky, D.L.: Suppression of quantum chaos in a quantum computer hardware. Phys. Rev. E 74, 026208 (2006)Google Scholar
  5. 5.
    Rossini, D., Calarco, T., Giovannetti, V., Montangero, S., Fazio, R.: Decoherence induced by interacting quantum spin baths. Phys. Rev. A 75, 032333 (2007)Google Scholar
  6. 6.
    Zhou, Z., Chu, S.I., Han, S.: Relaxation and decoherence in a resonantly driven qubit. J. Phys. B At. Mol. Opt. Phys. 41, 045506 (2008)Google Scholar
  7. 7.
    Castagnino, M., Fortin, S., Lombardi, O.: Suppression of decoherence in a generalization of the spin bath model. J. Phys. A: Math. Theor. 43, 065304 (2010)Google Scholar
  8. 8.
    Xu, Q., Sadiek, G., Kais, S.: Dynamics of entanglement in a two-dimensional spin system. Phys. Rev. A 83, 062312 (2011)Google Scholar
  9. 9.
    Brox, H., Bergli, J., Galperin, Y.M.: Importance of level statistics in the decoherence of a central spin due to a spin environment. Phys. Rev. A 85, 052117 (2012)Google Scholar
  10. 10.
    Prosen, T.: Exact time-correlation functions of quantum Ising chain in a kicking transversal magnetic field. Prog. Theor. Phys. Suppl. 139, 191 (2000)Google Scholar
  11. 11.
    Prosen, T., Seligman, T.H.: Decoherence of spin echoes. J. Phys. A: Math. Gen. 35, 4707 (2002)Google Scholar
  12. 12.
    Prosen, T.: General relation between quantum ergodicity and fidelity of quantum dynamics. Phys. Rev. E 65, 036208 (2002)Google Scholar
  13. 13.
    Prosen, T.: Ruelle resonances in kicked quantum spin chain. Phys. D 187, 244 (2004)Google Scholar
  14. 14.
    Lakshminarayan, A., Subrahmanyam, V.: V.: Multipartite entanglement in a one-dimensional time dependent Ising model. Phys. Rev. A 71, 062334 (2005)Google Scholar
  15. 15.
    Boness, T., Stocklin, M.M.A., Monteiro, T.S.: Quantum chaos with spin-chains in pulsed magnetic fields. arXiv:quant-ph/0612074 (2006) (preprint)
  16. 16.
    Pineda, C., Prosen, T.: Universal and nonuniversal level statistics in a chaotic quantum spin chain. Phys. Rev. E 76, 061127 (2007)Google Scholar
  17. 17.
    Viennot, D., Aubourg, L.: Decoherence, relaxation, and chaos in a kicked-spin ensemble. Phys. Rev. E 87, 062903 (2013)Google Scholar
  18. 18.
    Husimi, K.: Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 22, 264 (1940)Google Scholar
  19. 19.
    Viennot, D.: Geometric phases in adiabatic Floquet theory, abelian gerbes and Cheon’s anholonomy. J. Phys. A Math. Theor. 42, 395302 (2009)Google Scholar
  20. 20.
    Bengtsson, I., Życkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2006)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CNRS UMR 6213, Institut UTINAMUniversité de Bourgogne-Franche-Comté, Observatoire de BesançonBesançon CedexFrance

Personalised recommendations