Advertisement

Quantum Information Processing

, Volume 14, Issue 2, pp 731–737 | Cite as

Bound on local unambiguous discrimination between multipartite quantum states

  • Ying-Hui Yang
  • Fei Gao
  • Guo-Jing Tian
  • Tian-Qing Cao
  • Hui-Juan Zuo
  • Qiao-Yan Wen
Article

Abstract

We investigate the upper bound on unambiguous discrimination by local operations and classical communication. We demonstrate that any set of linearly independent multipartite pure quantum states can be locally unambiguously discriminated if the number of states in the set is no more than \(\max \{d_{i}\}\), where the space spanned by the set can be expressed in the irreducible form \(\otimes _{i=1}^{N}d_{i}\) and \(d_{i}\) is the optimal local dimension of the \(i\hbox {th}\) party. That is, \(\max \{d_{i}\}\) is an upper bound. We also show that it is tight, namely there exists a set of \(\max \{d_{i}\}+1\) states, in which at least one of the states cannot be locally unambiguously discriminated. Our result gives the reason why the multiqubit system is the only exception when any three quantum states are locally unambiguously distinguished.

Keywords

Quantum information Upper bound Unambiguous discrimination Local operations and classical communication  Multipartite quantum states 

Notes

Acknowledgments

The authors would like to thank Runyao Duan for many valuable suggestions. This work is supported by NSFC (Grant Nos. 61300181, 61272057, 61202434, 61170270, 61100203, 61121061, 61402148), Beijing Natural Science Foundation (Grant No. 4122054), Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0475, YETP0477), Project of Science and Technology Department of Henan Province of China (142300410143).

References

  1. 1.
    Roa, L., Retamal, J.C., Alid-Vaccarezza, M.: Dissonance is required for assisted optimal state discrimination. Phys. Rev. Lett. 107, 080401 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Zhang, F.L., Chen, J.L., Kwek, L.C., Vedral, V.: Requirement of dissonance in assisted optimal state discrimination. Sci. Rep. 3, 2134 (2013)ADSGoogle Scholar
  3. 3.
    Xu, L.F., Zhang, F.L., Liang, M.L., Chen, J.L.: Assisted optimal state discrimination without entanglement. Europhys. Lett. 106, 50004 (2014)Google Scholar
  4. 4.
    Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Walgate, J., Short, A.J., Hardy, L., Vedral, V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85, 4972 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89, 147901 (2002)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Horodecki, M., Sen(De), A., Sen, U., Horodecki, K.: Local indistinguishability: more nonlocality with less entanglement. Phys. Rev. Lett. 90, 047902 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Watrous, J.: Bipartite subspaces having no bases distinguishable by local operations and classical communication. Phys. Rev. Lett. 95, 080505 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Duan, R., Feng, Y., Xin, Y., Ying, M.: Distinguishability of quantum states by separable operations. IEEE Trans. Inf. Theory 55, 1320 (2009)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Duan, R., Xin, Y., Ying, M.: Locally indistinguishable subspaces spanned by three-qubit unextendible product bases. Phys. Rev. A 81, 032329 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Yu, N., Duan, R., Ying, M.: Any \(2 \otimes n\) subspace is locally distinguishable. Phys. Rev. A 84, 012304 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Feng, Y., Shi, Y.: Characterizing locally indistinguishable orthogonal product states. IEEE Trans. Inf. Theory 55, 2799 (2009)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Yu, N., Duan, R., Ying, M.: Four locally indistinguishable ququad-ququad orthogonal maximally entangled states. Phys. Rev. Lett. 109, 020506 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Yang, Y., Gao, F., Tian, G., Cao, T., Wen, Q.: Local distinguishability of orthogonal quantum states in a \(2\otimes 2\otimes 2\) system. Phys. Rev. A 88, 024301 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, Z., Wen, Q., Gao, F., Tian, G., Cao, T.: One-way LOCC indistinguishability of maximally entangled states. Quantum Inf. Process. 13, 795C804 (2014)Google Scholar
  16. 16.
    Chen, Y., Yang, D.: Optimal conclusive discrimination of two nonorthogonal pure product multipartite states through local operations. Phys. Rev. A 64, 064303 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Chen, Y., Yang, D.: Optimally conclusive discrimination of nonorthogonal entangled states by local operations and classical communications. Phys. Rev. A 65, 022320 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Ji, Z., Cao, H., Ying, M.: Optimal conclusive discrimination of two states can be achieved locally. Phys. Rev. A 71, 032323 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Chefles, A.: Condition for unambiguous state discrimination using local operations and classical communication. Phys. Rev. A 69, 050307 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Duan, R., Feng, Y., Ji, Z., Ying, M.: Distinguishing arbitrary multipartite basis unambiguously using local operations and classical communication. Phys. Rev. Lett. 98, 230502 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Bandyopadhyay, S., Walgate, J.: Local distinguishability of any three quantum states. J. Phys. A Math. Theor. 42, 072002 (2009)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    Chitambar, E., Duan, R., Hsieh, M.H.: When do local operations and classical communication suffice for two-qubit state discrimination? IEEE Trans. Inf. Theory 60, 1549 (2014)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Duan, R.: Private communicationGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ying-Hui Yang
    • 1
    • 2
  • Fei Gao
    • 1
  • Guo-Jing Tian
    • 1
  • Tian-Qing Cao
    • 1
  • Hui-Juan Zuo
    • 1
    • 3
  • Qiao-Yan Wen
    • 1
  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.School of Mathematics and Information ScienceHenan Polytechnic UniversityJiaozuoChina
  3. 3.Mathematics and Information Science CollegeHebei Normal UniversityShijiazhuangChina

Personalised recommendations