Advertisement

Quantum Information Processing

, Volume 14, Issue 1, pp 287–301 | Cite as

Entanglement witnesses generated by positive maps

  • Wei Yang
Article
  • 128 Downloads

Abstract

Entanglement witnesses are non-positive Hermitian operators which can detect whether a quantum state is entangled. Positive maps based on one and two given quantum states are constructed, and entanglement witnesses are generated by composing the positive maps with affine maps. An entanglement witness example is given at the end.

Keywords

Quantum states Entanglement witnesses Positive maps Affine maps 

Notes

Acknowledgments

The author would like to thank the editor and the reviewers for their constructive comments and suggestions to improve the quality of the paper. This work was funded by project 13XKJC01 from Leading Academic Discipline Project of Shanghai Dianji University and the funding scheme for training young teachers in colleges and universities in Shanghai (ZZSDJ14023).

References

  1. 1.
    Brandao, F.G.S.L., Vianna, R.O.: Witnessed entanglement. Int. J. Quantum Inf. 4, 331–340 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Dong, D.Y., Lam, J., Tarn, T.J.: Rapid incoherent control of quantum systems based on continuous measurements and reference model. IET Control Theory Appl. 3, 161–169 (2009)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Martina, L., Ruggeri, G., Soliani, G.: Correlation energy and entanglement gap in continuous models. Int. J. Quantum Inf. 9, 843–862 (2011)CrossRefMATHGoogle Scholar
  4. 4.
    Terhal, B.M.: Detecting quantum entanglement. Theor. Comput. Sci. 287, 313–335 (2002)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Younes, A., Rowe, J., Miller, J.: Enhanced quantum searching via entanglement and partial diffusion. Phys. D 237, 1074–1078 (2008)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Zhao, S.W., Lin, H., Sun, J.T., Xue, Z.G.: An implicit Lyapunov control for finite-dimensional closed quantum systems. Int. J. Robust Nonlinear Control 22, 1212C1228 (2011)MathSciNetGoogle Scholar
  7. 7.
    Choi, M.D.: Positive semidefinite biquadratic forms. Linear Algebra Appl. 12, 95–100 (1975)Google Scholar
  8. 8.
    Eom, M.H., Kye, S.H.: Duality for positive linear maps in matrix algebras. Math. Scand 86, 130–142 (2000)MATHMathSciNetGoogle Scholar
  9. 9.
    Yosida, K.: Functional Analysis. Springer, Berlin (1999)Google Scholar
  10. 10.
    Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Horodecki, M., Horodecki, P., Horodecki, R.: Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps. Phys. Lett. A 283, 1–7 (2001)ADSCrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Lewenstein, M., Kraus, B., Cirac, J.I., Horodecki, P.: Optimization of entanglement witness. Phys. Rev. A 62, 052310 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Terhal, B.M.: Bell inequalities and the separability criterion. Phys. Lett. A 271, 319–326 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Maziero, J., Serra, R.M.: Classicality witness for two-qubit states. Int. J. Quantum Inf. 10, 1250028 (2012)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wu, Y.C., Guo, G.C.: Determining the existence of the common entanglement witnesses for some entangled states. Phys. Rev. A 75, 052333 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Chruściński, D., Sarbicki, G.: Entanglement witness: construction, analysis and classification. arXiv:1402.2413
  18. 18.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Gorini, V., Sudarshan, E.C.G.: Extreme affine transformations. Commun. Math. Phys. 46, 43–52 (1976)ADSCrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Ha, K.C., Kye, S.H.: Entanglement witnesses arising from exposed positive linear maps. Open Syst. Inf. Dyn. 18, 323–337 (2011)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Jamiolkowski, A.: Linear transformations which preserve trace and positive semi-definiteness of operators. Rep. Math. Phys. 3, 5275 (1972)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Skowronek, L.: Dualities and positivity in the study of quantum entanglement. Int. J. Quantum Inf. 8, 721–754 (2011)CrossRefGoogle Scholar
  23. 23.
    Chruściński, D., Kossakowski, A.: Geometry of quantum states: new construction of positive maps. Phys. Lett. A 373, 2301–2305 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsShanghai Dianji UniversityShanghaiPeople’s Republic of China

Personalised recommendations