Quantum Information Processing

, Volume 14, Issue 1, pp 373–379 | Cite as

Joint remote state preparation for two-qubit equatorial states

  • Binayak S. Choudhury
  • Arpan DharaEmail author


In this paper, we propose a protocol of joint remote state preparation of an equatorial two-qubit pure quantum state using GHZ states, performing projective measurements and appropriate unitary operations. The probability of success of our scheme is shown to increase if one of the parties holding the partial information transmits the information classically to the receiver.


Joint remote state preparation Equatorial two-qubit state  Projective measurement Unitary operation 



This work is supported by the University Grants Commission of India. The support is gratefully acknowledged. The authors gratefully acknowledge the valuable suggestions made by the referee.


  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473–1476 (1994)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Barrett, M.D., Chiaverini, J., Schaetz, T., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Leuenberger, M.N., Flatte, M.E., Awschalom, D.D.: Teleportation of electronic many-qubit states encoded in the electron spin of quantum dots via single photons. Phys. Rev. Lett. 94, 107401 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Cardoso, W.B., Avelar, A.T., Baseia, B., Almeida, N.G.D.: Teleportation of entangled states without Bell-state measurement. Phys. Rev. A 72, 045802 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323, 486 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Pati, A.K.: Minimum cbits for remote preperation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold \(S^{n-1}\). Phys. Rev. A 65, 022316 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Kurucz, Z., Adam, P., Janszky, J.: General criterion for oblivious remote state preparation. Phys. Rev. A 73, 062301 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Hayashi, A., Hashimoto, T., Horibe, M.: Remote state preparation without oblivious conditions. Phys. Rev. A 67, 052302 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Abeyesinghe, A., Hayden, P.: Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A 68, 062319 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Paris, M.G.A., Cola, M., Bonifacio, R.: Remote state preparation and teleportation in phase space. J. Opt. B 5, S360 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Yu, Y.F., Feng, J., Zhan, M.S.: Preparing remotely two instances of quantum state. Phys. Lett. A 310, 329 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a non maximally entangled state. Phys. Rev. A 69, 022310 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Berry, D.W.: Resources required for exact remote state preparation. Phys. Rev. A 70, 062306 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Babichev, S.A., Brezger, B., Lvovsky, A.L.: Remote preparation of a single-mode photonic qubit by measuring field quadrature noise. Phys. Rev. Lett. 92, 047903 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Gour, G., Sanders, B.C.: Remote preparation and distribution of bipartite entangled states. Phys. Rev. Lett. 93, 260501 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Huang, Y.X., Zhan, M.S.: Remote preparation of multipartite pure state. Phys. Lett. A 327, 404 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Continuous variable remote state preparation. Phys. Rev. A 72, 052315 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Bennett, C.H., et al.: Remote preparation of quantum states. IEEE Trans. Inf. Theory 51, 56 (2005)CrossRefzbMATHGoogle Scholar
  26. 26.
    Peters, N.A., et al.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Rosenfeld, W., et al.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon “Hybrid” entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Luo, M.X., et al.: The faithful remote preparation of general quantum states. Quantum Inf. Process. 12, 279–294 (2013)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B 40, 3719 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Xia, Y., Song, J., Song, H.S., Guo, J.L.: Multiparty remote state preparation with linear optical elements. Int. J. Quantum Inf. 6, 1127 (2008)CrossRefzbMATHGoogle Scholar
  32. 32.
    Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B 41, 095501 (2008)Google Scholar
  33. 33.
    Nguyen, B.A., Kim, J.: Collective remote state preparation. Int. J. Quantum Inf. 6, 485 (2008)Google Scholar
  34. 34.
    Nguyen, B.A.: Joint remote preparation of a general two-qubit state. J. Phys. B 42, 125501 (2009)Google Scholar
  35. 35.
    Bang, Z.Y., Yong, Z.Q., Jin, S.: Probabilistic joint remote preparation of a high-dimensional equatorial quantum state. Chin. Phys. B 19, 080310 (2010)Google Scholar
  36. 36.
    Xiao, X.Q., Liu, J.M., Zeng, G.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B 44, 075501 (2011)Google Scholar
  37. 37.
    Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325–2342 (2013)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  39. 39.
    Buscemi, F., D’Ariano, G.M., Macchiavello, C.: Economical Phase-Covariant Cloning of Qudits. Phys. Rev. A 71, 042327 (2005)Google Scholar
  40. 40.
    Rezakhani, A.T., Siadatnejad, S., Ghaderi, A.H.: Separability in Asymmetric Phase-Covariant Cloning. Phys. Lett. A 336, 278 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Engineering Science and Technology, Shibpur (Formerly Bengal Engineering and Science University, Shibpur)HowrahIndia

Personalised recommendations