Advertisement

Quantum Information Processing

, Volume 13, Issue 12, pp 2783–2800 | Cite as

A probabilistic approach to quantum Bayesian games of incomplete information

  • Azhar IqbalEmail author
  • James M. Chappell
  • Qiang Li
  • Charles E. M. Pearce
  • Derek Abbott
Article

Abstract

A Bayesian game is a game of incomplete information in which the rules of the game are not fully known to all players. We consider the Bayesian game of Battle of Sexes that has several Bayesian Nash equilibria and investigate its outcome when the underlying probability set is obtained from generalized Einstein–Podolsky–Rosen experiments. We find that this probability set, which may become non-factorizable, results in a unique Bayesian Nash equilibrium of the game.

Keywords

Quantum games Bayesian Nash equilibria EPR experiments Quantum probability 

Notes

Acknowledgments

We acknowledge helpful discussions with Andrew Allison.

References

  1. 1.
    Blaquiere, A.: Wave mechanics as a two player game. In: Dynamical Systems and Microphysics, 33. Springer, Berlin (1980). Available at the quantum computation archive maintained by Tom Toffoli: http://pm1.bu.edu/~tt/qcl/pdf/blaquiea198277787a07.pdf
  2. 2.
    Wiesner, S.: Conjugate coding, SIGACT News 15 /1, 78 (1983). Available at the quantum computation archive maintained by Tom Toffoli: http://pm1.bu.edu/~tt/qcl/pdf/wiesners198316024137.pdf
  3. 3.
    Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58, 731 (1990)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)MathSciNetCrossRefADSzbMATHGoogle Scholar
  5. 5.
    Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052 (1999)MathSciNetCrossRefADSzbMATHGoogle Scholar
  6. 6.
    Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)MathSciNetCrossRefADSzbMATHGoogle Scholar
  7. 7.
    Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47, 2543 (2000)MathSciNetCrossRefADSzbMATHGoogle Scholar
  8. 8.
    Vaidman, L.: Variations on the theme of the Greenberger–Horne–Zeilinger Proof. Found. Phys. 29, 615 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Benjamin, S.C., Hayden, P.M.: Comment on “Quantum games and quantum strategies”. Phys. Rev. Lett. 87, 069801 (2001)CrossRefADSGoogle Scholar
  10. 10.
    van Enk, S.J., Pike, R.: Classical rules in quantum games. Phys. Rev. A 66, 024306 (2002)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Johnson, N.F.: Playing a quantum game with a corrupted source. Phys. Rev. A 63, 020302(R) (2001)CrossRefADSGoogle Scholar
  12. 12.
    Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291 (2000)MathSciNetCrossRefADSzbMATHGoogle Scholar
  13. 13.
    Iqbal, A., Toor, A.H.: Evolutionarily stable strategies in quantum games. Phys. Lett. A 280, 249 (2001)MathSciNetCrossRefADSzbMATHGoogle Scholar
  14. 14.
    Du, J., Li, H., Xu, X., Zhou, X., Han, R.: Entanglement enhanced multiplayer quantum games. Phys. Lett. A 302, 229 (2002)MathSciNetCrossRefADSzbMATHGoogle Scholar
  15. 15.
    Du, J., Li, H., Xu, X., Shi, M., Wu, J., Zhou, X., Han, R.: Experimental realization of quantum games on a quantum computer. Phys. Rev. Lett. 88, 137902 (2002)CrossRefADSGoogle Scholar
  16. 16.
    Piotrowski, E.W., Sladkowski, J.: Quantum market games. Phys. A 312, 208 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Iqbal, A., Toor, A.H.: Quantum cooperative games. Phys. Lett. A 293, 103 (2002)MathSciNetCrossRefADSzbMATHGoogle Scholar
  18. 18.
    Flitney, A.P., Abbott, D.: An introduction to quantum game theory. Fluct. Noise Lett. 2, R175 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Iqbal, A., Toor, A.H.: Quantum mechanics gives stability to a Nash equilibrium. Phys. Rev. A 65, 022306 (2002)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Piotrowski, E.W., Sladkowski, J.: An invitation to quantum game theory. Int. J. Theor. Phys. 42, 1089 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Shimamura, J., Özdemir, S.K., Morikoshi, F., Imoto, N.: Entangled states that cannot reproduce original classical games in their quantum version. Phys. Lett. A 328, 20 (2004)MathSciNetCrossRefADSzbMATHGoogle Scholar
  22. 22.
    Flitney, A.P., Abbott, D.: Quantum games with decoherence. J. Phys. A 38, 449 (2005)MathSciNetCrossRefADSzbMATHGoogle Scholar
  23. 23.
    Du, J., Li, H., Xu, X., Zhou, X., Han, R.-D.: Multi-player and multi-choice quantum game. Chin. Phys. Lett. 19, 1221 (2002)CrossRefADSGoogle Scholar
  24. 24.
    Han, Y.J., Zhang, Y.S., Guo, G.C.: W state and Greenberger–Horne–Zeilinger state in quantum three-person prisoner’s dilemma. Phys. Lett. A 295, 61 (2002)MathSciNetCrossRefADSzbMATHGoogle Scholar
  25. 25.
    Iqbal, A., Weigert, S.: Quantum correlation games. J. Phys. A 37, 5873 (2004)MathSciNetCrossRefADSzbMATHGoogle Scholar
  26. 26.
    Mendes, R.: The quantum ultimatum game. Quant. Inf. Process. 4, 1 (2005)MathSciNetCrossRefADSzbMATHGoogle Scholar
  27. 27.
    Cheon, T., Tsutsui, I.: Classical and quantum contents of solvable game theory on Hilbert space. Phys. Lett. A 348, 147 (2006)CrossRefADSzbMATHGoogle Scholar
  28. 28.
    Iqbal, A.: Playing games with EPR-type experiments. J. Phys. A Math. Gen. 38, 9551 (2005)MathSciNetCrossRefADSzbMATHGoogle Scholar
  29. 29.
    Nawaz, A., Toor, A.H.: Generalized quantization scheme for two-person non-zero-sum games. J. Phys. A Math. Gen. 37, 11457 (2004)MathSciNetCrossRefADSzbMATHGoogle Scholar
  30. 30.
    Özdemir, S.K., Shimamura, J., Imoto, N.: Quantum advantage does not survive in the presence of a corrupt source: optimal strategies in simultaneous move games. Phys. Lett. A 325, 104 (2004)MathSciNetCrossRefADSzbMATHGoogle Scholar
  31. 31.
    Cheon, T.: Game theory formulated on Hilbert space. In: AIP Conference Proceedings, Volume 864, pp. 254 260, Quantum Computing: Back Action (2006), Indian Institute of Technology, Kanpur, India. arXiv:quantph/0605134
  32. 32.
    Shimamura, J., Özdemir, S.K., Morikoshi, F., Imoto, N.: Quantum and classical correlations between players in game theory. Int. J. Quant. Inf. 2, 79 (2004)CrossRefzbMATHGoogle Scholar
  33. 33.
    Chen, Q., Wang, Y., Liu, J.T., Wang, K.L.: N-player quantum minority game. Phys. Lett. A 327, 98 (2004)MathSciNetCrossRefADSzbMATHGoogle Scholar
  34. 34.
    Schmid, C., Flitney, A.P., Wieczorek, W., Kiesel, N., Weinfurter, H., Hollenberg, L.C.L.: Experimental implementation of a four-player quantum game. New J. Phys. 12, 063031 (2010)CrossRefADSGoogle Scholar
  35. 35.
    Ichikawa, T., Tsutsui, I.: Duality, phase structures, and dilemmas in symmetric quantum games. Ann. Phys. 322, 531 (2007)MathSciNetCrossRefADSzbMATHGoogle Scholar
  36. 36.
    Cheon, T., Iqbal, A.: Bayesian Nash equilibria and Bell inequalities. J. Phys. Soc. Jpn. 77, 024801 (2008)CrossRefADSGoogle Scholar
  37. 37.
    Özdemir, S.K., Shimamura, J., Imoto, N.: A necessary and sufficient condition to play games in quantum mechanical settings. New J. Phys. 9, 43 (2007)CrossRefGoogle Scholar
  38. 38.
    Flitney, A.P., Greentree, A.D.: Coalitions in the quantum Minority game: classical cheats and quantum bullies. Phys. Lett. A 362, 132 (2007)CrossRefADSzbMATHGoogle Scholar
  39. 39.
    Iqbal, A., Cheon, T.: Constructing quantum games from nonfactorizable joint probabilities. Phys. Rev. E 76, 061122 (2007)MathSciNetCrossRefADSGoogle Scholar
  40. 40.
    Ichikawa, T., Tsutsui, I., Cheon, T.: Quantum game theory based on the Schmidt decomposition. J. Phys. A Math. Theory 41, 135303 (2008)MathSciNetCrossRefADSGoogle Scholar
  41. 41.
    Ramzan, M., Khan, M.K.: Noise effects in a three-player Prisoner’s Dilemma quantum game. J. Phys. A Math. Theory 41, 435302 (2008)MathSciNetCrossRefADSGoogle Scholar
  42. 42.
    Flitney, A.P., Hollenberg, L.C.L.: Nash equilibria in quantum games with generalized two-parameter strategies. Phys. Lett. A 363, 381 (2007)MathSciNetCrossRefADSzbMATHGoogle Scholar
  43. 43.
    Aharon, N., Vaidman, L.: Quantum advantages in classically defined tasks. Phys. Rev. A 77, 052310 (2008)CrossRefADSGoogle Scholar
  44. 44.
    Bleiler, S.A.: A formalism for quantum games and an application. arXiv:0808.1389
  45. 45.
    Ahmed, A., Bleiler, S., Khan, F.S.: Octonionization of three player, two strategy maximally entangled quantum games. Int. J. Quant. Inform. 8(3), 411 (2010)CrossRefzbMATHGoogle Scholar
  46. 46.
    Li, Q., He, Y., Jiang, J.P.: A novel clustering algorithm based on quantum games. J. Phys. A Math. Theor. 42, 445303 (2009)MathSciNetCrossRefADSGoogle Scholar
  47. 47.
    Li, Q., Iqbal, A., Chen, M., Abbott, D.: Quantum strategies win in a defector-dominated population. Phys. A 391, 3316 (2012)CrossRefGoogle Scholar
  48. 48.
    Chappell, J.M., Iqbal, A., Abbott, D.: Constructing quantum games from symmetric non-factorizable joint probabilities. Phys. Lett. A 374, 4104 (2010)MathSciNetCrossRefADSzbMATHGoogle Scholar
  49. 49.
    Chappell, J.M., Iqbal, A., Abbott, D.: Analyzing three-player quantum games in an EPR type setup. PLoS ONE 6(7), e21623 (2011)CrossRefADSGoogle Scholar
  50. 50.
    Iqbal, A., Abbott, D.: Quantum matching pennies game. J. Phys. Soc. Jpn. 78, 014803 (2009)CrossRefADSGoogle Scholar
  51. 51.
    Chappell, J.M., Iqbal, A., Lohe, M.A., von Smekal, L.: An analysis of the quantum penny flip game using geometric algebra. J. Phys. Soc. Jpn. 78, 054801 (2009)CrossRefADSGoogle Scholar
  52. 52.
    Iqbal, A., Cheon, T., Abbott, D.: Probabilistic analysis of three-player symmetric quantum games played using the Einstein–Podolsky–Rosen–Bohm setting. Phys. Lett. A 372, 6564 (2008)MathSciNetCrossRefADSzbMATHGoogle Scholar
  53. 53.
    Chappell, J.M., Iqbal, A., Abbott, D.: Analysis of two-player quantum games in an EPR setting using geometric algebra. PLoS ONE 7(1), e29015 (2012)CrossRefADSGoogle Scholar
  54. 54.
    Chappell, J.M., Iqbal, A., Abbott, D.: N-player quantum games in an EPR setting. PLoS ONE 7(5), e36404 (2012)CrossRefADSGoogle Scholar
  55. 55.
    Phoenix, S.J.D., Khan, F.S.: The role of correlation in quantum and classical games. Fluct. Noise Lett. 12, 1350011 (2013)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Khan, F.S., Phoenix, S.J.D.: Gaming the quantum. Quant. Inf. Comput. 13(3–4), 231 (2013)MathSciNetGoogle Scholar
  57. 57.
    Khan, F.S., Phoenix, S.J.D.: Mini-maximizing two qubit quantum computations. Quant. Inf. Process. 12, 3807 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  58. 58.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  59. 59.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar
  60. 60.
    Binmore, K.: Game Theory: A Very Short Introduction. Oxford University Press, USA (2007)CrossRefGoogle Scholar
  61. 61.
    Rasmusen, E.: Games and Information: An Introduction to Game Theory, 3rd edn. Blackwell Publishers Ltd., Oxford (2001)Google Scholar
  62. 62.
    Osborne, M.J.: An Introduction to Game Theory. Oxford University Press, USA (2003)Google Scholar
  63. 63.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)CrossRefADSzbMATHGoogle Scholar
  64. 64.
    Bohm, D.: Quantum Theory. Prentice Hall, Englewood Cliffs (1951)Google Scholar
  65. 65.
    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)Google Scholar
  66. 66.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  67. 67.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447 (1966)CrossRefADSzbMATHGoogle Scholar
  68. 68.
    Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982)MathSciNetCrossRefADSGoogle Scholar
  69. 69.
    Clauser, J.F., Shimony, A.: Bell’s theorem. Experimental tests and implications. Rep. Prog. Phys. 41, 1881 (1978)CrossRefADSGoogle Scholar
  70. 70.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)CrossRefADSGoogle Scholar
  71. 71.
    Cereceda, J.L.: Quantum mechanical probabilities and general probabilistic constraints for Einstein–Podolsky–Rosen–Bohm experiments. Found. Phys. Lett. 13, 427 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Azhar Iqbal
    • 1
    • 2
    Email author
  • James M. Chappell
    • 2
  • Qiang Li
    • 3
  • Charles E. M. Pearce
    • 4
  • Derek Abbott
    • 2
  1. 1.Department of Mathematics and StatisticsKing Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia
  2. 2.School of Electrical and Electronic EngineeringThe University of AdelaideAdelaideAustralia
  3. 3.College of Electrical EngineeringChongqing UniversityChongqingPeople’s Republic of China
  4. 4.School of Mathematical SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations