Advertisement

Quantum Information Processing

, Volume 13, Issue 11, pp 2567–2586 | Cite as

The quest for a Quantum Neural Network

  • Maria Schuld
  • Ilya Sinayskiy
  • Francesco Petruccione
Article

Abstract

With the overwhelming success in the field of quantum information in the last decades, the ‘quest’ for a Quantum Neural Network (QNN) model began in order to combine quantum computing with the striking properties of neural computing. This article presents a systematic approach to QNN research, which so far consists of a conglomeration of ideas and proposals. Concentrating on Hopfield-type networks and the task of associative memory, it outlines the challenge of combining the nonlinear, dissipative dynamics of neural computing and the linear, unitary dynamics of quantum computing. It establishes requirements for a meaningful QNN and reviews existing literature against these requirements. It is found that none of the proposals for a potential QNN model fully exploits both the advantages of quantum physics and computing in neural networks. An outlook on possible ways forward is given, emphasizing the idea of Open Quantum Neural Networks based on dissipative quantum computing.

Keywords

Quantum computing Artificial neural networks Open quantum systems Quantum Neural Networks 

Notes

Acknowledgments

This work is based upon research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.

References

  1. 1.
    Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Rev Mod. Phys. 78(4), 1213 (2006)CrossRefADSGoogle Scholar
  2. 2.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5(4), 115–133 (1943)MathSciNetMATHGoogle Scholar
  3. 3.
    Kak, C.S.: Quantum neural computing. Adv. Imaging Electron Phys. 94, 259–313 (1995)CrossRefGoogle Scholar
  4. 4.
    Freeman, W.J., Vitiello, G.: Dissipation and spontaneous symmetry breaking in brain dynamics. J. Phys. A Math. Theor. 41(30), 304042 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hameroff, S.: Quantum computation in brain microtubules? The penrose-hameroff ’orch or’ model of consciousness. Philos. Trans. Math. Phys. Eng. Sci. 356(1743), 1869–1896 (1998)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Tegmark, M.: Importance of quantum decoherence in brain processes. Phys. Rev. E 61(4), 4194 (2000)CrossRefADSGoogle Scholar
  7. 7.
    Massimo Panella and Giuseppe Martinelli: Neural networks with quantum architecture and quantum learning. Int. J. Circuit Theory Appl. 39(1), 61–77 (2011)CrossRefGoogle Scholar
  8. 8.
    Gerasimos, G.: Neurodynamics and attractors in quantum associative memories. Integr. Comput. Aided Eng. 14(3), 225–242 (2007)Google Scholar
  9. 9.
    Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning (preprint). arXiv:1307.0411 (2013)
  10. 10.
    Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Wiebe, Nathan., Kapoor, Ashish., Svore, Krysta.: Quantum nearest-neighbor algorithms for machine learning (preprint). arXiv:1401.2142 (2014)
  12. 12.
    Shor, W.P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Andrecut, M., Ali, M.K.: A quantum neural network model. Int. J. Mod. Phys. C 13(01), 75–88 (2002)MathSciNetCrossRefADSMATHGoogle Scholar
  14. 14.
    Altaisky, M.V.: Quantum neural network (preprint). quant-ph/0107012 (2001)
  15. 15.
    Sanjay Gupta and RKP Zia: Quantum neural networks. J. Comput. Syst. Sci. 63(3), 355–383 (2001)CrossRefGoogle Scholar
  16. 16.
    lisabeth, E., Behrman, C., Chandrashekar, V., Wang, Z., Belur, C.K., Steck, James, E., Skinner, S.R.: A quantum neural network computes entanglement (preprint) quant-ph/0202131 (2002)
  17. 17.
    Li, F., Zheng, B.: A study of quantum neural networks. In: Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, 2003, vol. 1, pp. 539–542. IEEE (2003)Google Scholar
  18. 18.
    Zhou, R., Wang, H., Qian, W., Shi, Y.: Quantum associative neural network with nonlinear search algorithm. Int. J. Theor. Phys. 51(3), 705–723 (2012)CrossRefMATHGoogle Scholar
  19. 19.
    Oliveira, W., Silva, A.J., Ludermir, T.B., Leonel, A., Galindo, W.R., Pereira, J.C.C.: Quantum logical neural networks. In: 10th Brazilian Symposium on Neural Networks, 2008. SBRN’08. pp. 147–152. IEEE (2008)Google Scholar
  20. 20.
    Tóth, G., Lent, C.S., Tougaw, P.D., Brazhnik, Y., Weng, W., Porod, W., Liu, R.-W., Huang, Y.-F.: Quantum cellular neural networks (preprint). cond-mat/0005038 (2000)
  21. 21.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  22. 22.
    Ezhov, A., Ventura, D.: Quantum neural networks. In: Future directions for intelligent systems and information sciences, pp. 213–234 (2000)Google Scholar
  23. 23.
    Breuer, H.P., Petruccione, F.: The theory of open quantum systems. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  24. 24.
    Verstraete, F., Wolf, M.M., Cirac, J.I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5(9), 633–636 (2009)CrossRefGoogle Scholar
  25. 25.
    Purves, D.: Neuroscience, 3rd edn. Sinauer, Sunderland (2008)Google Scholar
  26. 26.
    Abbott, L.F., Regehr, W.G.: Synaptic computation. Nature 431(7010), 796–803 (2004)CrossRefADSGoogle Scholar
  27. 27.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79(8), 2554–2558 (1982)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Rojas, R.: Neural Nets: A Systematic Introduction. Springer, New York (1996)Google Scholar
  29. 29.
    John, J.: Hopfield and David W Tank. Computing with neural circuits- a model. Science 233(4764), 625–633 (1986)CrossRefGoogle Scholar
  30. 30.
    Richard, W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)CrossRefGoogle Scholar
  31. 31.
    Amit, D.J., Gutfreund, H., Sompolinsky, H.: Spin-glass models of neural networks. Phys. Rev. A 32(2), 1007–1018 (1985)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    van Hemmen, J.L.: Spin-glass models of a neural network. Phys. Rev. A 34(4), 3435–3445 (1986)MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Hertz, J.A., Krogh, A.S., Palmer, R.G.: Introduction to the Theory of Neural Computation, vol. 1. Westview Press, Boulder (1991)Google Scholar
  34. 34.
    Mehrotra, K., Mohan, C.K., Ranka, S.: Elements of Artificial Neural Networks. MIT Press, Cambridge (1996)Google Scholar
  35. 35.
    Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81(10), 3088–3092 (1984)CrossRefADSGoogle Scholar
  36. 36.
    DiVincenzo, D.P. et al.: The physical implementation of quantum computation. (preprint) quant-ph/0002077 (2000)
  37. 37.
    Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5(1), 19–26 (2009)CrossRefGoogle Scholar
  38. 38.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (preprint). quant-ph/0001106 (2000)
  39. 39.
    Gui Lu Long: Duality quantum computing and duality quantum information processing. Int. J. Theor. Phys. 50(4), 1305–1318 (2011)CrossRefMATHGoogle Scholar
  40. 40.
    Menneer, T., Narayanan, A.: Quantum-inspired neural networks. Department of Computer Science, University of Exeter, UK, Technical Report 329 (1995)Google Scholar
  41. 41.
    Peruš, M.: Neural networks as a basis for quantum associative networks. Neural Netw. World 10(6), 1001–1013 (2000)Google Scholar
  42. 42.
    Zak, M., Williams, C.P.: Quantum neural nets. Int. J. Theor. Phys. 37(2), 651–684 (1998)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Behrman, E.C., Steck, J.E., Skinner, S.R.: A spatial quantum neural computer. In: International Joint Conference on Neural Networks, 1999. IJCNN’99. vol. 2, pp. 874–877. IEEE (1999)Google Scholar
  44. 44.
    Faber, J., Giraldi, G.A.: Quantum models for artificial neural networks. Electronically available: http://arquivosweb.lncc.br/pdfs/QNN-Review.pdf (2002)
  45. 45.
    Silva, A.J., Ludermir, T.B., de Oliveira, W.R.: Superposition based learning algorithm. In: 2010 Eleventh Brazilian Symposium on Neural Networks (SBRN), pp. 1–6. IEEE (2010)Google Scholar
  46. 46.
    Goncalves, C.P.: Quantum cybernetics and complex quantum systems science—a quantum connectionist exploration (preprint). arXiv:1402.1141v1 (2014)
  47. 47.
    Ventura, D., Martinez, T.: Quantum associative memory. Inf. Sci. 124(1), 273–296 (2000)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Trugenberger, A.C.: Probabilistic quantum memories. Phys. Rev. Lett. 87, 067901 (Jul 2001)Google Scholar
  49. 49.
    Andrecut, M., Ali, M.K.: Quantum associative memory. Int. J. Mod. Phys. B 17(12), 2447–2472 (2003)MathSciNetCrossRefADSMATHGoogle Scholar
  50. 50.
    Siomau, M.: Quantum perceptron (preprint). arXiv:1210.6626 (2012)
  51. 51.
    Zak, M., Williams, C.P.: Quantum Recurrent Networks for Simulating Stochastic Processes. Springer, Berlin (1999)CrossRefGoogle Scholar
  52. 52.
    Behrman, E.C., Nash, L.R., Steck, J.E., Chandrashekar, A.A., Skinner, S.R.: Simulations of quantum neural networks. Inf. Sci. 128(3), 257–269 (2000)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Behrman, E.C., Steck, J.E.: A quantum neural network computes its own relative phase (preprint). arXiv:1301.2808 (2013)
  54. 54.
    da Adenilton, J., de Silva, W.R., Oliveira, T.B.Ludermir: Classical and superposed learning for quantum weightless neural networks. Neurocomputing 75(1), 52–60 (2012)CrossRefGoogle Scholar
  55. 55.
    Long, G.-L., Sun, Y.: Efficient scheme for initializing a quantum register with an arbitrary superposed state. Phys. Rev. A 64(1), 014303 (2001)CrossRefADSGoogle Scholar
  56. 56.
    Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching (preprint). quant-ph/9605034 (1996)
  57. 57.
    Trugenberger, C.A.: Quantum pattern recognition. Quantum Inf. Process. 1(6), 471–493 (2002)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Sagheer, A., Zidan, M.: Autonomous quantum perceptron neural network (preprint). arXiv:1312.4149v1 (2013)
  59. 59.
    Weigang, L.: Entangled neural networks. Department of Computer Science, University of Brasilia, CP, 4466, 70919-970 (2000)Google Scholar
  60. 60.
    Segher, A.A., Metwally, N.: Communication via quantum neural network (preprint) arXiv:0912.2512 (2009)
  61. 61.
    Neigovzen, R., Neves, J.L., Sollacher, R., Glaser, S.J.: Quantum pattern recognition with liquid-state nuclear magnetic resonance. Phys. Rev. A. 79(4), 042321 (2009)CrossRefADSGoogle Scholar
  62. 62.
    Li, F., Zhao, S., Zheng, B.: Quantum neural network in speech recognition. In: 6th International Conference on Signal Processing, 2002, vol. 2, pp. 1267–1270. IEEE (2002)Google Scholar
  63. 63.
    Purushothaman, G., Karayiannis, N.B.: Quantum neural networks (qnns): inherently fuzzy feedforward neural networks. IEEE Trans. Neural Netw. 8(3), 679–693 (1997)CrossRefGoogle Scholar
  64. 64.
    Schneidman, E., Michael, J.B., Ronen, S., William, B.: Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006)CrossRefADSGoogle Scholar
  65. 65.
    Nishimori, H., Nonomura, Y.: Quantum effects in neural networks. J. Phys. Soc. Jpn. 65(12), 3780–3796 (1996)MathSciNetCrossRefADSMATHGoogle Scholar
  66. 66.
    Attal, S., Petruccione, F., Sinayskiy, I.: Open quantum walks on graphs. Phys. Lett. A 376(18), 1545–1548 (2012)MathSciNetCrossRefADSMATHGoogle Scholar
  67. 67.
    Sinayskiy, I., Petruccione, F.: Efficiency of open quantum walk implementation of dissipative quantum computing algorithms. Quantum Inf. Process. 11(5), 1301–1309 (2012)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Bauer, M., Bernard, D., Tilloy, A.: Open quantum random walks: bistability on pure states and ballistically induced diffusion. Phys. Rev. A 88, 062340 (Dec 2013)Google Scholar
  69. 69.
    Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)MathSciNetCrossRefADSGoogle Scholar
  70. 70.
    Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum walks on graphs representing the firing patterns of a quantum neural network. Phys. Rev. A 89(3), 032333 (2014)CrossRefADSGoogle Scholar
  71. 71.
    Ball, P.: The dawn of quantum biology. Nature 474(7351), 272–274 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Maria Schuld
    • 1
  • Ilya Sinayskiy
    • 1
    • 2
  • Francesco Petruccione
    • 1
    • 2
  1. 1.Quantum Research Group, School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.National Institute for Theoretical Physics (NITheP)KwaZulu-NatalSouth Africa

Personalised recommendations