Quantum Information Processing

, Volume 13, Issue 9, pp 2007–2016 | Cite as

Forgery attack on one-time proxy signature and the improvement

  • Chun-Wei Yang
  • Yi-Ping Luo
  • Tzonelih Hwang


This paper points out that in Wang and Wei’s scheme (Quantum Inf Process 11:455–463, 2012), an eavesdropper, Eve, can replace the original message of a proxy signature with a forged one of her choice without being detected by the verifier. Accordingly, one of the security requirements of a quantum signature, i.e., unforgeability, may not be satisfied in their scheme. An improvement is given to avoid this attack, and the comparisons with the existing quantum proxy signature are also demonstrated.


Forgery attack One-time proxy signature Decoherence-free state Quantum cryptography 



We would like to thank the National Science Council of Republic of China for financial support of this research under Contract No. NSC 100-2221-E-006-152-MY3.


  1. 1.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032v2, 15 November 2001
  3. 3.
    Hwang, T., Chong, S.K., Luo, Y.P., Wei, T.X.: New arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 284(12), 3144–3148 (2011)CrossRefADSGoogle Scholar
  4. 4.
    Yang, C.-W., Hwang, T., Luo, Y.-P.: Enhancement on “quantum blind signature based on two-state vector formalism. Quantum Inf. Process. (2012). doi: 10.1007/s11128-012-0362-2
  5. 5.
    Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(16), 3198–3201 (2010)CrossRefADSGoogle Scholar
  6. 6.
    Yang, Y.-G., Wang, Y., Teng, Y.-W., Chai, H.-P., Wen, Q.-Y.: Scalable arbitrated quantum signature of classical messages with multi-signers. Commun. Theor. Phys. 54(1), 84–88 (2010)CrossRefADSzbMATHGoogle Scholar
  7. 7.
    Wang, T.-Y., Wen, Q.-Y.: Fair quantum blind signatures. Chin. Phys. B 19(6), 60307–060307 (2010)CrossRefGoogle Scholar
  8. 8.
    Su, Q., Huang, Z., Wen, Q., Li, W.: Quantum blind signature based on two-state vector formalism. Opt. Commun. 283(21), 4408–4410 (2010)CrossRefADSGoogle Scholar
  9. 9.
    Wang, T.-Y., Wei, Z.-L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Zhou, J., Zhou, Y., Niu, X., Yang, Y.: Quantum proxy signature scheme with public verifiability. Sci. China Phys. Mech. Astron. 54(10), 1828–1832 (2011)CrossRefADSGoogle Scholar
  11. 11.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing (invited paper). In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. December 1984Google Scholar
  12. 12.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)MathSciNetCrossRefADSzbMATHGoogle Scholar
  13. 13.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)MathSciNetCrossRefADSzbMATHGoogle Scholar
  14. 14.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)CrossRefADSGoogle Scholar
  15. 15.
    Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)CrossRefADSGoogle Scholar
  16. 16.
    Damgard, I.: A design principle for hash functions. In: Advances in Cryptology: Proceedings of CRYPTO’89. pp. 416–427. Santa Barbara, California, USA. 20–24 August 1989Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainanTaiwan, ROC

Personalised recommendations