Advertisement

Quantum Information Processing

, Volume 13, Issue 9, pp 2099–2113 | Cite as

Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits

  • Chitra Shukla
  • Anirban PathakEmail author
Article

Abstract

Recently, an orthogonal-state-based protocol of direct quantum communication without actual transmission of particles is proposed by Salih et al. (Phys Rev Lett 110:170502, 2013) using chained quantum Zeno effect. The counterfactual condition (claim) of Salih et al. is weakened here to the extent that transmission of particles is allowed, but transmission of the message qubits (the qubits on which the secret information is encoded) is not allowed. Remaining within this weaker (non-counterfactual) condition, an orthogonal-state-based protocol of deterministic secure quantum communication is proposed using entanglement swapping, where actual transmission of the message qubits is not required. Further, it is shown that there exists a large class of quantum states that can be used to implement the proposed protocol. The security of the proposed protocol originates from monogamy of entanglement. As the protocol can be implemented without using conjugate coding, its security is independent of non-commutativity.

Keywords

Quantum cryptography Entanglement swapping  Direct quantum communication 

Notes

Acknowledgments

AP thanks Department of Science and Technology (DST), India for support provided through the DST Project No. SR/S2/LOP-0012/2010, and he also acknowledges the supports received from the Projects CZ.1.05/2.1.00/03.0058 and CZ.1.07/2.3.00/20.0017 of the Ministry of Education, Youth and Sports of the Czech Republic. The authors also thank Dr. R. Srikanth for some useful technical discussions.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)MathSciNetCrossRefADSzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)MathSciNetCrossRefADSzbMATHGoogle Scholar
  4. 4.
    Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)MathSciNetCrossRefADSzbMATHGoogle Scholar
  5. 5.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys. Rev. A 60, 157–166 (1999)CrossRefADSGoogle Scholar
  7. 7.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)CrossRefADSGoogle Scholar
  8. 8.
    Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)CrossRefADSGoogle Scholar
  9. 9.
    Degiovanni, I.P., Berchera, I.R., Castelletto, S., Rastello, M.L., Bovino, F.A., Colla, A.M., Castagnoli, G.: Quantum dense key distribution. Phys. Rev. A 69, 032310 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)CrossRefADSGoogle Scholar
  11. 11.
    Jun, L., Liu, Y.M., Cao, H.J., Shi, S.H., Zhang, Z.J.: Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23, 2652–2655 (2006)CrossRefADSGoogle Scholar
  12. 12.
    Li, X.-H., Deng, F.-G., Li, C.-Y., Liang, Y.-J., Zhou, P., Zhou, H.-Y.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354–1359 (2006)Google Scholar
  13. 13.
    Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41, 75–78 (2004)CrossRefADSGoogle Scholar
  14. 14.
    Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18–21 (2005)CrossRefADSGoogle Scholar
  15. 15.
    Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state. Euro. Phys. J. D 61, 785–790 (2011)CrossRefADSGoogle Scholar
  16. 16.
    Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)CrossRefADSGoogle Scholar
  17. 17.
    Hai-Jing, C., He-Shan, S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23, 290–292 (2006)CrossRefADSGoogle Scholar
  18. 18.
    Yuan, H., Song, J., Zhou, J., Zhang, G., Wei, X.: High-capacity deterministic secure four-qubit W state protocol for quantum communication based on order rearrangement of particle pairs. Int. J. Theor. Phys. 50, 2403–2409 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Long, G., Deng, F., Wang, C., Li, X., Wen, K., Wang, W.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251–272 (2007)CrossRefADSGoogle Scholar
  20. 20.
    Yadav, P., Srikanth, R., Pathak, A.: Generalization of the Goldenberg–Vaidman QKD Protocol. arXiv:1209.4304
  21. 21.
    Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg–Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Guo, G.-C., Shi, B.-S.: Quantum cryptography based on interaction-free measurement. Phys. Lett. A 256, 109–112 (1999)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23, 987–997 (1993)CrossRefADSGoogle Scholar
  24. 24.
    Noh, T.-G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Avella, A., Brida, G., Degiovanni, I.P., Genovese, M., Gramegna, M., Traina, P.: Experimental quantum-cryptography scheme based on orthogonal states. Phys. Rev. A 82, 062309 (2010)CrossRefADSGoogle Scholar
  26. 26.
    Ren, M., Wu, G., Wu, E., Zeng, H.: Experimental demonstration of counterfactual quantum key distribution. Laser Phys. 21, 755–760 (2011)CrossRefADSGoogle Scholar
  27. 27.
    Brida, G., Cavanna, A., Degiovanni, I.P., Genovese, M., Traina, P.: Experimental realization of counterfactual quantum cryptography. Laser Phys. Lett. 9, 247–252 (2012)CrossRefADSGoogle Scholar
  28. 28.
    Liu, Y., Ju, L., Liang, X.L., Tang, S.B., Tu, G.-L., Zhou, L., Peng, C.Z., Chen, K., Chen, T.Y., Chen, Z.B., Pan, J.W.: Experimental demonstration of counterfactual quantum communication. Phys. Rev. Lett. 109, 030501 (2012)CrossRefADSGoogle Scholar
  29. 29.
    Salih, H., Li, Z.-H., Al-Amri, M., Zubairy, M.S.: Protocol for direct counterfactual quantum communication. Phys. Rev. Lett. 110, 170502 (2013)CrossRefADSGoogle Scholar
  30. 30.
    Vaidman, L.: Comment on “Protocol for direct counterfactual quantum communication”. Phys. Rev. Lett. 112, 208901 (2014)Google Scholar
  31. 31.
    Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944–2950 (2012)CrossRefADSGoogle Scholar
  32. 32.
    Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914–1924 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779–783 (2011)CrossRefADSGoogle Scholar
  34. 34.
    Zhang, Q., Li, C., Li, Y., Nie, Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52, 22–27 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822–829 (1998)CrossRefADSGoogle Scholar
  36. 36.
    Mor, T.: No cloning of orthogonal states in composite systems. Phys. Rev. Lett. 80, 3137–3140 (1998)CrossRefADSGoogle Scholar
  37. 37.
    Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 9, 389–403 (2011)CrossRefzbMATHGoogle Scholar
  38. 38.
    Man, Z.-X., Xia, Y.-J., An, N.B.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B 39, 3855–3863 (2006)CrossRefADSGoogle Scholar
  39. 39.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Jaypee Institute of Information TechnologyNoida India
  2. 2.RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations