Quantum Information Processing

, Volume 13, Issue 11, pp 2391–2405 | Cite as

Protocols of quantum key agreement solely using Bell states and Bell measurement

  • Chitra Shukla
  • Nasir Alam
  • Anirban PathakEmail author


Two protocols of quantum key agreement (QKA) that solely use Bell state and Bell measurement are proposed. The first protocol of QKA proposed here is designed for two-party QKA, whereas the second protocol is designed for multi-party QKA. The proposed protocols are also generalized to implement QKA using a set of multi-partite entangled states (e.g., 4-qubit cluster state and \(\Omega \) state). Security of these protocols arises from the monogamy of entanglement. This is in contrast to the existing protocols of QKA where security arises from the use of non-orthogonal state (non-commutativity principle). Further, it is shown that all the quantum systems that are useful for implementation of quantum dialogue and most of the protocols of secure direct quantum communication can be modified to implement protocols of QKA.


Quantum key agreement Multi-party key agreement  Quantum cryptography Orthogonal-state-based quantum key agreement 



AP thanks Department of Science and Technology (DST), India for support provided through the DST project No. SR/S2/LOP-0012/2010 and he also acknowledges the supports received from the projects CZ.1.05/2.1.00/03.0058 and CZ.1.07/2.3.00/20.0017 of the Ministry of Education, Youth and Sports of the Czech Republic.


  1. 1.
    Bennett, C.H., Brassed, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)MathSciNetCrossRefADSzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)MathSciNetCrossRefADSzbMATHGoogle Scholar
  4. 4.
    Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)MathSciNetCrossRefADSzbMATHGoogle Scholar
  5. 5.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)CrossRefADSGoogle Scholar
  6. 6.
    Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)CrossRefADSGoogle Scholar
  7. 7.
    Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337–1344 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  8. 8.
    Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)CrossRefGoogle Scholar
  9. 9.
    Chong, S.-K., Hwang, T.: Quantum key agreement protocol based on BB84. Optic Commun. 283, 1192–1195 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Yin, X.-R., Ma, W.-P., Liu, W.-Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gisin, N., Renner, R., Wolf, S.: classical and quantum key agreement: Is there a classical analog to bound entanglement? Algorithmica 34, 389–412 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dijk, M. v., Koppelaar, A.: Quantum key agreement. In: Proceedings of IEEE International Symposium on Information Theory, IEEE, pp. 350–350 (1998)Google Scholar
  13. 13.
    Tsai, C.W., Hwang, T.: On “Quantum key agreement protocol”, Technical Report, C-S-I-E, NCKU. Taiwan, R.O.C. (2009)Google Scholar
  14. 14.
    Tsai, C.W., Chong S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference (CISC 2010), pp. 210–213. National Chiao Tung University, Hsinchu, Taiwan, 27–28 May (2010)Google Scholar
  15. 15.
    Chong, S.-K., Tsai, C.W., Hwang, T.: Improvement on “Quantum key agreement protocol with maximally entangled states”. Int. J. Theor. Phys. 50, 1793–1802 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multiparty quantum key agreement with single particles. Quantum Info. Process. 12, 1797–1805 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  17. 17.
    Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvement on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12, 3411–3420 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  18. 18.
    Shi, R.-H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  19. 19.
    Huang, W., Wen, Q.-Y., Liu, B., Su Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles, arXiv:1308.2777 (quant-ph)
  20. 20.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Simon, B.-W., Menezes, A.: Authenticated Diffe-Hellman key agreement protocols in selected areas in cryptography. Springer, Berlin Heidelberg (1999)Google Scholar
  22. 22.
    Victor, S.: Lower bounds for discrete logarithms and related problems. In Advances in Cryptology-EUROCRYPT’97, pp. 256–266. Springer, Berlin Heidelberg (1997)Google Scholar
  23. 23.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference, National Taiwan University of Science and Technology, Taipei, pp. 236–242 (2004)Google Scholar
  25. 25.
    Noh, T.-G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg-Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yadav, P.,Srikanth R., Pathak, A.: Generalization of the Goldenberg-Vaidman QKD protocol, arXiv:1209.4304 (quant-ph)
  28. 28.
    Avella, A., Brida, G., Degiovanni, I.P., Genovese, M., Gramegna, M., Traina, P.: Experimental quantum-cryptography scheme based on orthogonal states. Phys. Rev. A 82, 062309 (2010)CrossRefADSGoogle Scholar
  29. 29.
    Ren, M., Wu, G., Wu, E., Zeng, H.: Experimental demonstration of counterfactual quantum key distribution. Laser Phys. 21, 755–760 (2011)CrossRefADSGoogle Scholar
  30. 30.
    Brida, G., Cavanna, A., Degiovanni, I.P., Genovese, M., Traina, P.: Experimental realization of counterfactual quantum cryptography. Laser Phys. Lett. 9, 247–252 (2012)CrossRefADSGoogle Scholar
  31. 31.
    Liu, Yang, et al.: Experimental demonstration of counterfactual quantum communication. Phys. Rev. Lett. 109, 030501 (2012)CrossRefADSGoogle Scholar
  32. 32.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)Google Scholar
  33. 33.
    Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518–527 (2013)MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)CrossRefADSGoogle Scholar
  35. 35.
    Cai, Q.-Y., Li, B.-W.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. A 69, 054301 (2004)CrossRefADSGoogle Scholar
  36. 36.
    Pathak, A.: Elements of quantum computation and quantum communication. CRC Press, Boca Raton, USA (2013)zbMATHGoogle Scholar
  37. 37.
    An, N.B.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Jaypee Institute of Information TechnologyNoidaIndia
  2. 2.Department of Physics Visva BharatiSantiniketanIndia
  3. 3.RCPTM, Joint Laboratory of Optics of Palacky University, Institute of Physics of Academy of Science of the Czech Republic, Faculty of SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations