Advertisement

Quantum Information Processing

, Volume 13, Issue 10, pp 2255–2275 | Cite as

The (in)adequacy of applicative use of quantum cryptography in wireless sensor networks

  • Muhamed TurkanovićEmail author
  • Marko Hölbl
Article

Abstract

Recently quantum computation and cryptography principles are exploited in the design of security systems for wireless sensor networks (WSNs), which are consequently named as quantum WSN. Quantum cryptography is presumably secure against any eavesdropper and thus labeled as providing unconditional security. This paper tries to analyze the aspect of the applicative use of quantum principles in WSN. The outcome of the analysis elaborates a summary about the inadequacy of applicative use of quantum cryptography in WSN and presents an overview of all possible applicative challenges and problems while designing quantum-based security systems for WSN. Since WSNs are highly complex frameworks, with many restrictions and constraints, every security system has to be fully compatible and worthwhile. The aim of the paper was to contribute a verdict about this topic, backed up by equitable facts.

Keywords

Wireless sensor network (WSN) Quantum Cryptography Teleportation Swapping Authentication  Key agreement Attacks 

References

  1. 1.
    Rezaee, A.A., Yaghmaee, M.H., Rahmani, A.M., Mohajerzadeh, A.H.: HOCA: healthcare aware optimized congestion avoidance and control protocol for wireless sensor networks. J. Netw. Comput. Appl. 37, 216–228 (2013)Google Scholar
  2. 2.
    Owojaiye, G., Sun, Y.: Focal design issues affecting the deployment of wireless sensor networks for pipeline monitoring. Ad Hoc Netw. 11, 1237–1253 (2013)CrossRefGoogle Scholar
  3. 3.
    Somov, A., Baranov, A., Spirjakin, D., Spirjakin, A., Sleptsov, V., Passerone, R.: Deployment and evaluation of a wireless sensor network for methane leak detection. Sens. Actuators A Phys. 202, 217–225 (2012)Google Scholar
  4. 4.
    Dong, X., Vuran, M.C., Irmak, S.: Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Netw. 11, 1975–1987 (2012)Google Scholar
  5. 5.
    Sharma, G., Bala, S., Verma, A.K.: Security frameworks for wireless sensor networks—review. In: 2nd International Conference on Communication, Computing and Security [Icccs-2012], vol. 1, pp. 978–987 (2012)Google Scholar
  6. 6.
    Akkaya, K., Younis, M.: A survey on routing protocols for wireless sensor networks. Ad Hoc Netw. 3, 325–349 (2005)CrossRefGoogle Scholar
  7. 7.
    Romer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wirel. Commun. 11, 54–61 (2004)CrossRefGoogle Scholar
  8. 8.
    Akyildiz, I.F., Can Vuran, M.: Wireless Sensor Networks (2010)Google Scholar
  9. 9.
    Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52, 2292–2330 (2008)CrossRefGoogle Scholar
  10. 10.
    Shor, P.W.: Algorithms for quantum computation—discrete logarithms and factoring. In: Proceedings on the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)Google Scholar
  11. 11.
    Mayers, D.: Unconditional security in quantum cryptography. J ACM 48, 351–406 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lin, T.S., Kuo, S.Y.: Quantum Wireless Secure Communication Protocol, pp. 146–155 (2007)Google Scholar
  13. 13.
    Xu, H., Sharma, D.: Quantum key distribution for Wi-Fi network security. In: 4th IEEE International Conference on Circuits and Systems for Communications, 2008 (ICCSC 2008), pp. 85–89 (2008)Google Scholar
  14. 14.
    Hao, J., Ming-rui, W., Min, L., Jun-wei, Y.: A quantum-inspired ant-based routing algorithm for WSNs. In: IEEE 16th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 609–615 (2012)Google Scholar
  15. 15.
    Weizhong, L.: A quantum genetic algorithm based QoS routing protocol for wireless sensor networks. In: IEEE International Conference on Software Engineering and Service Sciences (ICSESS), pp. 37–40 (2010)Google Scholar
  16. 16.
    DARPA. Quantum-Assisted Sensing and Readout (QUASAR). http://www.darpa.mil. DARPA
  17. 17.
    I. Crossbow Technology. MICA 2, Wireless Measurement System. EOL: CrossbowGoogle Scholar
  18. 18.
    Nagy, N., Nagy, M., Akl, S.G.: Quantum security in wireless sensor networks. Nat. Comput. 9, 819–830 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Li, J.S., Yang, C.F.: Quantum communication in distributed wireless sensor networks, 2009. In: IEEE 6th International Conference on Mobile Adhoc and Sensor Systems (Mass 2009), pp. 238–243 (2009)Google Scholar
  20. 20.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary. Cambridge University Press, Cambridge (2011)Google Scholar
  21. 21.
    Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Oemer, B., Fuerst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Free-space distribution of entanglement and single photons over 144 km. Nat. Phys. 3, 481–486 (2007)Google Scholar
  22. 22.
    Bennett, C., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an Unknown Quantum State Via Dual Classical and EPR Channels. University of Bristol, Bristol (1993)Google Scholar
  23. 23.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefADSzbMATHGoogle Scholar
  24. 24.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)CrossRefADSGoogle Scholar
  25. 25.
    Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998)MathSciNetCrossRefADSzbMATHGoogle Scholar
  26. 26.
    Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing, in: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India: IEEE Press,pp. 175–179,(1984)Google Scholar
  27. 27.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)CrossRefADSGoogle Scholar
  28. 28.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)CrossRefADSGoogle Scholar
  29. 29.
    Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with single-photon two-qubit states. J. Phys. A Math. General 35, L407–L413 (2002)MathSciNetCrossRefADSzbMATHGoogle Scholar
  30. 30.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A At. Mol. Opt. Phys. 68: 042317/042311–042317/042316 (2003)Google Scholar
  31. 31.
    Kanamori, Y., Yoo, S.M., Gregory, D.A., Sheldon, F.T.: On Quantum Authentication Protocols, pp. 1650–1654 (2005)Google Scholar
  32. 32.
    Ju, Y.L., Tsai, I.M., Kuo, S.Y.: Performing Authenticated Encryption with Nanoscale Phenomenon, pp. 725–728 (2005)Google Scholar
  33. 33.
    Nguyen, T.M.T., Sfaxi, M.A., Ghernaouti-Hélie, S.: Integration of Quantum Cryptography in 802.11 Networks, pp. 116–123 (2006)Google Scholar
  34. 34.
    Sheng-Tzong, C., Chun-Yen, W., Ming-Hon, T.: Quantum communication for wireless wide-area networks. IEEE J. Sel. Areas Commun. 23, 1424–1432 (2005)CrossRefGoogle Scholar
  35. 35.
    Nagy, N., Nagy, M., Akl, S.: Quantum wireless sensor networks. In: Calude, C., Costa, J., Freund, R., Oswald, M., Rozenberg, G. (eds.) Unconventional Computing, pp. 177–188. Springer, Berlin (2008)CrossRefGoogle Scholar
  36. 36.
    Minghu, W., Xiuchang, Z., Siguang, C.: Quantum secure communication for wireless sensor networks. In: IEEE International Conference on Network Infrastructure and Digital Content, 2009 (IC-NIDC 2009), pp. 119–123 (2009)Google Scholar
  37. 37.
    Raymond, D.R., Midkiff, S.F.: Denial-of-service in wireless sensor networks: attacks and defenses. IEEE Pervasive Comput. 7, 74–81 (2008)CrossRefGoogle Scholar
  38. 38.
    Wood, A., Stankovic, J.A.: Denial of service in sensor networks. Computer 35, 54–62 (2002)CrossRefGoogle Scholar
  39. 39.
    Newsome, J., Shi, E., Song, D., Perrig, A.: The sybil attack in sensor networks: analysis and defenses. In: Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, Berkeley, California, USA, pp. 259–268. ACM (2004)Google Scholar
  40. 40.
    Zhu, W.T., Zhou, J., Deng, R.H., Bao, F.: Detecting node replication attacks in wireless sensor networks: a survey. J. Netw. Comput. Appl. 35, 1022–1034 (2012)CrossRefGoogle Scholar
  41. 41.
    Yussoff, Y.M., Hashim, H., Rosli, R., Baba, M.D.: A review of physical attacks and trusted platforms in wireless sensor networks. Procedia Eng. 41, 580–587 (2012)CrossRefGoogle Scholar
  42. 42.
    Das, A., Sharma, P., Chatterjee, S., Sing, J.K.: A dynamic password-based user authentication scheme for hierarchical wireless sensor networks. J. Netw. Comput. Appl. 35, 1646–1656 (2012)CrossRefGoogle Scholar
  43. 43.
    Chen, T.H., Shih, W.K.: A robust mutual authentication protocol for wireless sensor networks. ETRI J 32, 704–712 (2010)CrossRefGoogle Scholar
  44. 44.
    Vaidya, B., Makrakis, D., Mouftah, H.T.: Improved two-factor user authentication in wireless sensor networks. In: IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 600–606 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and Computer ScienceUniversity of MariborMariborSlovenia

Personalised recommendations