Quantum Information Processing

, Volume 13, Issue 7, pp 1537–1544 | Cite as

Semi-loss-tolerant strong quantum coin-flipping protocol using quantum non-demolition measurement

Article

Abstract

In this paper, we present a semi-loss-tolerant strong quantum coin-flipping (QCF) protocol with the best bias of 0.3536. Our manuscript applies quantum non-demolition measurement to quantum coin-flipping protocol. Furthermore, a single photon as a single qubit is used to avoid the difficult implementation of EPR resources. We also analyze the security of our protocol obtaining the best result among all coin-flipping protocols considering loss. A semi-loss-tolerant quantum dice rolling (QDR) protocol is first proposed, and the security of corresponding three-party QDR is analyzed to better demonstrate the security of our QCF.

Keywords

Quantum cryptography Quantum coin-flipping protocol  Quantum dice rolling protocol Quantum non-demolition measurement 

References

  1. 1.
    Blum, M.: In: Advances in Cryptology: A Report on CRYPTO’81. Santa-Barbara, CA, p. 11 (1981)Google Scholar
  2. 2.
    Feige, U.: In: Proceedings of the 40th Annual IEEE Symposium on the Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, p. 142 (1999)Google Scholar
  3. 3.
    Aharon, N., Silman, J.: New J. Phys. 12, 033027 (2010)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Aharonov, D., Ta-Shma, A., Vazirani, U., Yao A.C.: Quantum Bit Escrow. In: Proceedings of the 32nd Annual Symposium on Theory of Computing, New York, p. 705 (2000)Google Scholar
  5. 5.
    Ambainis A.: A new protocol and lower bounds for quantum coin-flipping. In: Proceedings of the 33rd Annual Symposium on Theory of Computing, New York, p. 134 (2001)Google Scholar
  6. 6.
    Spekkens, R.W., Rudolph, T.: Degrees of concealment and bindingness in quantum bit commitment protocols. Phys. Rev. A 65, 012310 (2001)CrossRefADSGoogle Scholar
  7. 7.
    Colbeck, R.: An entanglement-based protocol for strong coin tossing with bias 1/4. Phys. Lett. A 362, 390–392 (2007)MathSciNetCrossRefADSMATHGoogle Scholar
  8. 8.
    Chailloux, A., Kerenidis, I.: Optimal quantum strong coin-flipping. In: Proceedings of the 50th Annual IEEE Symposium on the Foundations of Computer Science, Atlanta, GA, p. 527 (2009)Google Scholar
  9. 9.
    Mochon, C.: Quantum weak coin-flipping with bias of 0.192. quant-ph/0403193 (2004)
  10. 10.
    Spekkens, R.W., Rudolph, T.: Quantum protocol for cheat-sensitive weak coin flipping. Phys. Rev. Lett. 89, 227901 (2002)CrossRefADSGoogle Scholar
  11. 11.
    Mochon, C.: Quantum weak coin-flipping with arbitrarily small bias. quant-ph/0711.4114 (2007)Google Scholar
  12. 12.
    Kilian, J.: In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing. ACM Press, New York, p. 20 (1988)Google Scholar
  13. 13.
    Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)CrossRefADSGoogle Scholar
  14. 14.
    Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997)CrossRefADSGoogle Scholar
  15. 15.
    Kitaev, A.: The proof is reproduced in Ref. [14] (unpublished)Google Scholar
  16. 16.
    Berlín, G., Brassard, G., Bussiéres, F., Godbout, N.: Fair loss-tolerant quantum coin flipping. Phys. Rev. A 80, 062321 (2009)CrossRefADSGoogle Scholar
  17. 17.
    Nguyen, A.T., Frison, J., Phan Huy, K., Massar, S.: Experimental quantum tossing of a single coin. New J. Phys. 10, 083037 (2008)CrossRefADSGoogle Scholar
  18. 18.
    Aharon, N., Massar, S., Silman, J.: A family of loss-tolerant quantum coin flipping protocols. Phys. Rev. A 82, 052307 (2010)CrossRefADSGoogle Scholar
  19. 19.
    Chailloux, A.: Improved loss-tolerant quantum coin flipping. quant-ph/1009.0044 (2011)Google Scholar
  20. 20.
    Ma, J.-J., Guo, F.-Z., Yang, Q., Li, Y.-B., Wen, Q.-Y.: Semi-loss-tolerant strong coin flipping protocol using EPR pairs. Quantum Inf. Comput. 12(5–6), 490–501 (2012)Google Scholar
  21. 21.
    Braginsky, V.B., Khalili, F.Y.: Quantum nondemolition measurements: the route from toys to tools. Rev. Mod. Phys. 68(1), 1–11 (1996)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Qian Yang
    • 1
    • 2
    • 3
  • Jia-Jun Ma
    • 1
    • 3
  • Fen-Zhuo Guo
    • 2
  • Qiao-Yan Wen
    • 1
  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.Center for Quantum Information, IIISTsinghua UniversityBeijingChina

Personalised recommendations