Advertisement

Quantum Information Processing

, Volume 13, Issue 3, pp 757–770 | Cite as

Quantum decision tree classifier

  • Songfeng Lu
  • Samuel L. Braunstein
Article

Abstract

We study the quantum version of a decision tree classifier to fill the gap between quantum computation and machine learning. The quantum entropy impurity criterion which is used to determine which node should be split is presented in the paper. By using the quantum fidelity measure between two quantum states, we cluster the training data into subclasses so that the quantum decision tree can manipulate quantum states. We also propose algorithms constructing the quantum decision tree and searching for a target class over the tree for a new quantum object.

Keywords

Quantum information processing Quantum entropy Quantum decision tree Quantum classification Machine learning 

References

  1. 1.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)zbMATHGoogle Scholar
  2. 2.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  3. 3.
    Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE T. Pattern Anal. 22, 4–37 (2000)CrossRefGoogle Scholar
  4. 4.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  5. 5.
    Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)Google Scholar
  6. 6.
    Pudenz, K.L., Lidar, D.A.: Quantum adiabatic machine learning. Quantum Inf. Process. 12, 2027–2070 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  7. 7.
    Tarrataca, L., Wichert, A.: A quantum production model. Quantum Inf. Process. 1q, 189–209 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hirsh, H.: A quantum leap for AI. IEEE Intell. Syst. 14, 9–16 (July/August 1999)Google Scholar
  9. 9.
    Bonner, R., Freivalds, R.: A survey of quantum learning. In: Proceedings of the 3rd Workshop on Quantum Computation and Learning, pp. 106–119 (2002)Google Scholar
  10. 10.
    Aïmeur, E., Brassard, G., Gambs, S.: Machine learning in a quantum world. Proc. Can. AI 2006, 431–442 (2006)MathSciNetGoogle Scholar
  11. 11.
    Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90, 261–287 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ezhov, A.A.: Pattern recognition with quantum neural networks. In: Proceedings of Advances in Pattern Recognition, pp. 60–71 (2001)Google Scholar
  13. 13.
    Ventura, D.: Pattern classification using a quantum system. In: Proceedings of the 6th Joint Conference on Information Science, pp. 537–540 (2002)Google Scholar
  14. 14.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219 (1996)Google Scholar
  15. 15.
    Schützhold, R.: Pattern recognition on a quantum computer. Phys. Rev. A. 67, 062311 (2003)CrossRefADSGoogle Scholar
  16. 16.
    Gambs, S.: Quantum Classification (2008). arXiv: quant-ph/0809.0444Google Scholar
  17. 17.
    Guta, M., Kotlowski, W.: Quantum learning: asymptoticallly optimal classification of qubit sates. New J. Phys. 12, 123032 (2010)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Sasaki, M., Carlini, A.: Quantum learning and universal quantum matching machine. Phys. Rev. A. 66, 022303 (2002)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Shi, Y.: Entropy lower bounds of quantum decision tree complexity. Inform. Process. Lett. 81, 23–27 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Buhrman, H., Wolf, R.D.: Complexity measures and decision tree complexity: a survey. Theor. Comput. Sci. 288, 21–43 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Dürr, C., H\(\phi \)yer, P.:. A Quantum Algorithm for Finding the Minium (1996). arXiv: quant-ph/9607014Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations