Advertisement

Quantum Information Processing

, Volume 13, Issue 3, pp 709–729 | Cite as

Adiabatic quantum programming: minor embedding with hard faults

  • Christine Klymko
  • Blair D. Sullivan
  • Travis S. Humble
Article

Abstract

Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into an underlying hardware or logical fabric. An essential step is embedding problem-specific information into the quantum logical fabric. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. These methods extend with fabric growth while scaling linearly in time and quadratically in footprint. We also provide methods for handling hard faults in the logical fabric without invoking approximations to the original problem and illustrate their versatility through numerical studies of embeddability versus fault rates in square lattices of complete bipartite unit cells. The studies show that these algorithms are more resilient to faulty fabrics than naive embedding approaches, a feature which should prove useful in benchmarking the adiabatic quantum optimization algorithm on existing faulty hardware.

Keywords

Quantum computing Adiabatic quantum optimization  Graph embedding Fault-tolerant computing 

Notes

Acknowledgments

This work was supported by the Lockheed Martin Corporation under Contract No. NFE-11-03394. The authors thank Greg Tallant (Lockheed) for technical interchange and Daniel Pack (ORNL) for help preparing Fig. 2. This manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

References

  1. 1.
    Adler, I., et al.: Faster parameterized algorithms for minor containment. Theor. Comput. Sci. 412, 7018–7028 (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    Altshuler, B., Karvi, H., Roland, J.: Anderson localization makes adiabatic quantum optimization fail. Proc. Natl. Acad. Sci. USA 108, E19–E20 (2011)CrossRefGoogle Scholar
  3. 3.
    Amir, E.: Approximation algorithms for treewidth. Algorithmica 56, 448–479 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bian, Z., Chudak, F., Macready, W.G., Clark, L., Gaitan, F.: Experimental determination of Ramsey numbers. Phys. Rev. Lett. 111, 130505 (2013)Google Scholar
  5. 5.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11, 1–23 (1993)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bodlaender, H.L.: A linear-time algorithm for finding tree decompositions of small treewidth. SIAM J. Comput. 25, 1035–1317 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bodlaender, H.L., Koster, A.M.C.A.: Treewidth Computations II. Lower Bounds, Technical Report UU-CS-2010-022. Department of Information and Computing Sciences, Utrecht University (2010)Google Scholar
  8. 8.
    Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discret. Appl. Math. 123, 155–225 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7, 193–209 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10, 343–353 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dickson, N.G., Amin, M.H.S.: Does adiabatic quantum optimization fail for NP-complete problems? Phys. Rev. Lett. 106, 050502 (2011)Google Scholar
  12. 12.
    Dickson, N.G., Amin, M.H.S.: Algorithmic approach to adiabatic quantum optimization. Phys. Rev. A 85, 032303 (2012)Google Scholar
  13. 13.
    Diestel, R.: Graph Theory. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  14. 14.
    D-Wave Systems Inc., 100–4401 Still Creek Drive, Burnaby V5C 6G9, BC, Canada. http://www.dwavesys.com/
  15. 15.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution, arxiv:quant-ph/0001106 (2000)Google Scholar
  16. 16.
    Farhi, E., et al.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–476 (2001)MathSciNetCrossRefADSzbMATHGoogle Scholar
  17. 17.
    Fomin, F.V., Thilikos, D.M.: Dominating sets and local treewidth. LNCS 2832, 221–229 (2003)MathSciNetGoogle Scholar
  18. 18.
    Gaitan, F., Clark, L.: Ramsey numbers and adiabatic quantum computing. Phys. Rev. Lett. 108, 010501 (2012)Google Scholar
  19. 19.
    Harris, R., et al.: Experimental investigation of an eight qubit unit cell in a superconducting optimization processor. Phys. Rev. B 82, 024511–024526 (2010)CrossRefADSGoogle Scholar
  20. 20.
    Kleinberg, J., Rubinfeld, R.: Short paths in expander graphs. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pp. 86–95 (1996)Google Scholar
  21. 21.
    Neven, H., Rose, G., Macready, W.G.: Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization, arXiv:0804.4457v1 [quant-ph] (2008)Google Scholar
  22. 22.
    Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., Aspuru-Guzik, A.: Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2, 571 (2012)Google Scholar
  23. 23.
    Pudenz, K.L., Lidar, D.A.: Quantum adiabatic machine learning. Quantum Inf. Process. 12, 2027–2070 (2012)Google Scholar
  24. 24.
    Robertson, N., Seymour, P.D.: Graph minors. XIII: the disjoint paths problem. J. Comb. Theory Ser. B 63, 65–110 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Xiong, L., Dinneen, M.J.: The Feasibility and Use of a Minor Containment Algorithm, Computer Science Technical Reports 171, University of Auckland (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christine Klymko
    • 1
  • Blair D. Sullivan
    • 2
    • 3
  • Travis S. Humble
    • 2
  1. 1.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA
  2. 2.Oak Ridge National LaboratoryQuantum Computing InstituteOak RidgeUSA
  3. 3.Department of Computer ScienceNorth Carolina State UniversityRaleighUSA

Personalised recommendations