Quantum Information Processing

, Volume 13, Issue 3, pp 601–614 | Cite as

Perfect state transfer on spin-1 chains

Article

Abstract

We show that networks of spin-1 particles connected in a special geometry and subject to Affleck–Kennedy–Lieb–Tasaki (AKLT) interaction are capable of perfectly transferring states of particles (qubits and qutrits) if we also allow a global control of the network in predetermined time intervals. The geometry can be one, two, and three dimensional. The strengths of the couplings have the same modulus, and only their signs differ on various bonds. Any particle which is routed in the network acquires relative phase shifts which can be corrected after it is extracted from the network. An advantage of this protocol is that one can route more than one particle through the network simultaneously. We show that a uniform magnetic fields do not deteriorate the fidelity and only change the relative phases in a controllable way.

Keywords

State transfer Spin chain AKLT 

References

  1. 1.
    Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)CrossRefADSGoogle Scholar
  2. 2.
    Yung, M.H., Bose, S.: Perfect state transfer, effective gates and entanglement generation in engineered bosonic and fermionic networks. Phys. Rev. A 71, 032310 (2005)CrossRefADSGoogle Scholar
  3. 3.
    Karbach, P., Stolze, J.: Spin chains as perfect quantum state mirrors. Phys. Rev. A 72, 030301(R) (2005)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Di Franco, C., Paternostro, M., Kim, M.S.: Perfect state transfer on a spin-chain without state initialization. Phys. Rev. Lett. 101, 230502 (2008)CrossRefGoogle Scholar
  5. 5.
    Gualdi, G., Kostak, V., Marzoli, I., Tombesi, P.: Perfect state transfer in long-range interacting spin chains. Phys. Rev. A 78, 022325 (2008)CrossRefADSGoogle Scholar
  6. 6.
    Markiewicz, M., Wiesniak, M.: Perfect state transfer without state initialization and remote collaboration. Phys. Rev. A 79, 054304 (2009)CrossRefADSGoogle Scholar
  7. 7.
    Shi, T., Ying, L., Song, Z., Sun, C.: Quantum state transfer via the ferromagnetic chain in a spatially modulated field. Phys. Rev. A 71, 032309 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Plenio, M.B., Semiao, F.L.: High efficiency transfer of quantum information and multi-particle entanglement generation in translation invariant quantum chains. New J. Phys. 7, 73 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Burgarth, D., Giovannetti, V., Bose, S.: Efficient and perfect state transfer in quantum chains. Int. J. Quantum Inf. 4, 405 (2006)CrossRefMATHGoogle Scholar
  10. 10.
    Bayat, A., Bose, S.: Entanglement transfer through an antiferromagnetic spin chain. Adv. Math. Phys. 2010, 127182 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bayat, A., Burgarth, D., Mancini, S., Bose, S.: Memory effects in spin chain channels for information transmission. Phys. Rev. A 77, 050306(R) (2008)CrossRefADSGoogle Scholar
  12. 12.
    Bayat, A., Karimipour, V.: Thermal effects on quantum communication through spin chains. Phys. Rev. A 71, 042330 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Bayat, A., Karimipour, V.: Transfer of d-Level quantum states through spin chains by random swapping. Phys. Rev. A 75, 022321 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)CrossRefADSGoogle Scholar
  15. 15.
    Albanese, C., Christandl, M., Datta, N., Ekert, A.: Mirror inversion of quantum states in linear registers. Phys. Rev. Lett. 93, 230502 (2004)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Christandl, M., Datta, N., Dorlas, T.C., Ekert, A., Kay, A., Landahl, A.J.: Perfect transfer of arbitrary states in quantum spin networks. Phys. Rev. A 71, 032312 (2005)CrossRefADSGoogle Scholar
  17. 17.
    Brougham, T., Nikolopoulos, G.M., Jex, I.: Communication in quantum networks of logical bus topology. Phys. Rev. A 80, 052325 (2009)CrossRefADSGoogle Scholar
  18. 18.
    Facer, C., Twamley, J., Cresser, J.D.: Quantum switching networks for perfect qubit routing. Phys. Rev. A 77, 012334 (2008)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Bernasconi, A., Godsil, C., Severini, S.: Quantum networks on cubelike graphs. Phys. Rev. A 78, 052320 (2008)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Saxena, N., Severini, S., Shparlinski, I.E.: Parameters of integral circulant graphs and periodic quantum dynamics. Int. J. Quantum Inf. 5, 417 (2007)CrossRefMATHGoogle Scholar
  21. 21.
    Wojcik, A., Luczak, T., Kurzynski, P., Grudka, A., Gdala, T., Bednarska, M.: Unmodulated spin chains as universal quantum wires. Phys. Rev. A 75, 022330 (2007)CrossRefADSGoogle Scholar
  22. 22.
    Aberg, J., Hengl, S., Renner, R.: Directed quantum communication. New J. Phys. 15, 033025 (2013)CrossRefADSGoogle Scholar
  23. 23.
    Zueco, D., Galve, F., Kohler, S., Hanggi, P.: Quantum router based on ac control of qubit chains. Phys. Rev. A 80, 042303 (2009)CrossRefADSGoogle Scholar
  24. 24.
    Pemberton-Ross, P.J., Kay, A.: Perfect quantum routing in regular spin networks. Phys. Rev. Lett. 106, 020503 (2011)CrossRefADSGoogle Scholar
  25. 25.
    Karimipour, V., Sarmadi Rad, M., Asoudeh, M.: Perfect state transfer in two and three dimensional structures. Phys. Rev. A 85, 010302(R) (2012)CrossRefADSGoogle Scholar
  26. 26.
    Pemberton-Ross, P., Kay, A., Schirmer, S.: Quantum control theory for state transformations: dark states and their enlightenment. arXiv:1003.4290 (2010)Google Scholar
  27. 27.
    Morimae, T., Dunjko, V., Kashefi, E.: Ground state blind quantum computation on AKLT state, preprint arXiv:1009.3486Google Scholar
  28. 28.
    Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115, 477 (1988)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Valence bond ground states in isotropic quantum antiferromagnets. Phys. Rev. Lett. 59, 799 (1987)CrossRefADSGoogle Scholar
  30. 30.
    Darwaman, A.S., Bartlett, S.D.: Optical spin-1 chain and its use as a quantum computational wire. Phys. Rev. A 82, 012328 (2010)CrossRefADSGoogle Scholar
  31. 31.
    Brennen, G.K., Miyake, A.: Measurement-based quantum computer in the gapped ground state of a two-body Hamiltonian. Phys. Rev. Lett. 101, 010502 (2008)CrossRefADSGoogle Scholar
  32. 32.
    Haldane, F.D.M.: Nonlinear field theory of large-spin heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis nel state. Phys. Rev. Lett. 50, 1153 (1983)MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Wei, T.C., Affleck, I., Raussendorf, R.: Affleck–Kennedy–Lieb–Tasaki state on a honeycomb lattice is a universal quantum computational resource. Phys. Rev. Lett. 106, 070501 (2011)MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Nikolopoulos, G.N.: Statistics of a quantum-state-transfer Hamiltonian in the presence of disorder. Phys. Rev. A 87, 042311 (2013)CrossRefADSGoogle Scholar
  35. 35.
    Yang, S., Bayat, A., Bose, S.: Spin state transfer in laterally coupled quantum dot chains with disorders. Phys. Rev. A 82, 022336 (2010)CrossRefADSGoogle Scholar
  36. 36.
    Petrosyan, D., Nikolopoulos, G.M., Lambropoulos, P.: State transfer in static and dynamic spin chains with disorder. Phys. Rev. A 81, 042307 (2010)CrossRefADSGoogle Scholar
  37. 37.
    Burgarth, D., Bose, S.: Universal destabilization and slowing of spin transfer functions by a bath of spins. Phys. Rev. A 73, 062321 (2006)CrossRefADSGoogle Scholar
  38. 38.
    Cai, J.-M., Zhou, Z.-W., Guo, G.-C.: Decoherence effects on the quantum spin channels. Phys. Rev. A 74, 022328 (2006)CrossRefADSGoogle Scholar
  39. 39.
    Hu, M.L., Lian, H.L.: State transfer in intrinsic decoherence spin channels. Eur. Phys. J. D 55, 711 (2009)CrossRefADSGoogle Scholar
  40. 40.
    Hu, M.L.: State transfer in dissipative and dephasing environments. Eur. Phys. J. D 59, 497 (2010)CrossRefADSGoogle Scholar
  41. 41.
    Macchiavello, C., Palma, G.M.: Entanglement enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)CrossRefADSGoogle Scholar
  42. 42.
    Arshed, N., Toor, A.H.: Entanlement-assisted classical capacity of quantum channels with correlated noise. Phys. Rev. A 73, 014304 (2006)CrossRefADSGoogle Scholar
  43. 43.
    Bayat, A., Burgarth, D., Mancini, S., Bose, S.: Quantum state transfer and time-dependent disorder in quantum chains. Phys. Rev. A 77, 050306 (2008)CrossRefADSGoogle Scholar
  44. 44.
    Benenti, G., DArrigo, A., Falci, G.: Enhancement of transmission rates in quantum memory channels with damping. Phys. Rev. Lett. 103, 020502 (2009)CrossRefADSGoogle Scholar
  45. 45.
    DArrigo, A., Benenti, G., Falci, G.: Transmission of classical and quantum information through a quantum memory channel with damping. Eur. Phys. J. D 66, 1 (2012)CrossRefGoogle Scholar
  46. 46.
    Benatti, F., Floreanini, R., Karimipour, V.: Noise effects in perfect transmission of quantum states. Phys. Rev. A 86, 062335 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsAzad University of Tehran, Northern BranchTehranIran
  2. 2.Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations