Quantum Information Processing

, Volume 13, Issue 2, pp 475–489 | Cite as

Efficient protocol of \(N\)-bit discrete quantum Fourier transform via transmon qubits coupled to a resonator

  • A.-S. F. Obada
  • H. A. Hessian
  • A.-B. A. Mohamed
  • Ali H. Homid
Article

Abstract

Based on the one- and two-qubit gates defined and generated via superconducting transmon qubits homogeneously coupled to a superconducting stripline resonator, we present a new physical protocol for implementing an \(N\)-bit discrete quantum Fourier transform. We propose and illustrate a detailed experimental feasibility for realizing the algorithm. The average fidelity is computed to prove the success of this algorithm. Estimated time for implementing the protocol using the proposed scheme is compared with previous schemes. Estimates show that the protocol can be successfully implemented within the present experimental limits.

Keywords

Solid quantum computer Quantum algorithms Quantum gates Superconducting qubits Average fidelity 

Notes

Acknowledgments

The authors would like to record their gratitude to the referee for this valuable comments that improved the presentation of the article in many aspects.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Schumacher, B.: Quantum coding. Phys. Rev. A. 51, 2738–2747 (1995)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Lov K. Grover.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on the Theory of Computing (STOC), pp. 212–219 (1996)Google Scholar
  5. 5.
    Lloyd, S.: Universal quantum simulators. Science 273, 1073–1078 (1996)MathSciNetCrossRefADSMATHGoogle Scholar
  6. 6.
    Deutsch, D., Josza, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A 439, 553–558 (1992)CrossRefADSMATHMathSciNetGoogle Scholar
  7. 7.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser, S. (ed.) Foundations of Computer Science, IEEE Computer Society Press 35, pp. 124–134 (1994)Google Scholar
  8. 8.
    Kitaev, AYu.: Quantum measurements and the abelian stabilizer problem. Electron. Colloquium Comput. Complex. 3, 1–22 (1996)Google Scholar
  9. 9.
    Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26, 1474–1483 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Boyer, M., Brassard, G., Hoyer, P., Tapp, A.: Tight bounds on quantum searching. Fortsch. Phys. 46, 493–505 (1998)CrossRefADSGoogle Scholar
  11. 11.
    Wang, H.F., Zhu, A.D., Zhang, S.: Physical optimization of quantum error correction circuits with spatially separated quantum dot spins. Opt. Express 21, 12484–12494 (2013)CrossRefADSGoogle Scholar
  12. 12.
    Obadaa, A.-S.F., Hessian, H.A., Mohamed, A.-B.A., Homid, Ali H.: Quantum logic gates generated by SC-charge qubits coupled to a resonator. J. Phys. A Math. Theor. 45, 485305 (2012)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Obadaa, A.-S.F., Hessian, H.A., Mohamed, A.-B.A., Homid, Ali H.: A proposal for the realization of universal quantum gates via superconducting qubits inside a cavity. Ann. Phys. 334, 47–57 (2013)CrossRefADSMATHMathSciNetGoogle Scholar
  14. 14.
    Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot-microcavity coupled system. Phys. Rev. A 87, 062337 (2013)CrossRefADSGoogle Scholar
  15. 15.
    Weinstein, Y.S., Pravia, M.A., Fortunato, E.M., Lloyd, S., Cory, D.G.: Implementation of the quantum Fourier transform. Phys. Rev. Lett. 86, 1889–1891 (2001)CrossRefADSGoogle Scholar
  16. 16.
    Scully, M.O., Zubairy, M.S.: Cavity QED implementation of the discrete quantum Fourier transform. Phys. Rev. A 65, 052324 (2002)CrossRefADSGoogle Scholar
  17. 17.
    Wang, H.F., Zhang, S., Yeon, K.H.: Implementing quantum discrete Fourier transform by using cavity quantum electrodynamics. J. Korean Phys. Soc. 53, 1787–1790 (2008)Google Scholar
  18. 18.
    Wang, H.F., Shao, X.Q., Zhao, Y.F., Zhang, S., Yeon, K.H.: Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED. J. Phys. B At. Mol. Opt. Phys. 43, 065503 (2010)CrossRefADSGoogle Scholar
  19. 19.
    Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics. New J. Phys. 13, 013021 (2011)CrossRefADSGoogle Scholar
  20. 20.
    Howell, J.C., Yeazell, J.A.: Reducing the complexity of linear optics quantum circuits. Phys. Rev. A 61, 052303 (2000)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Imamoglu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999)CrossRefADSGoogle Scholar
  22. 22.
    Wang, H.-F., Jiang, X.-X., Zhang, S., Yeon, K.-H.: Efficient quantum circuit for implementing discrete quantum Fourier transform in solid-state qubits. J. Phys. B At. Mol. Opt. Phys. 44, 115502 (2011)CrossRefADSGoogle Scholar
  23. 23.
    Wang, H.F., Zhang, S., Zhu, A.D., Yeon, K.H.: Fast and effective implementation of discrete quantum Fourier transform via virtual-photon-induced process in separate cavities. J. Opt. Soc. Am. B 29, 1078–1084 (2012)CrossRefADSGoogle Scholar
  24. 24.
    Wendin, G., Shumeiko, V.S.: Quantum bits with Josephson junctions (Review Article). Low Temp. Phys. 33, 724 (2007)CrossRefADSGoogle Scholar
  25. 25.
    You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)CrossRefGoogle Scholar
  26. 26.
    You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)CrossRefADSGoogle Scholar
  27. 27.
    Yang, C.P., Liu, Y.X., Nori, F.: Phase gate of one qubit simultaneously controlling \(n\) qubits in a cavity. Phys. Rev. A 81, 062323 (2010)CrossRefADSGoogle Scholar
  28. 28.
    Devoret, M.H.: Quantum fluctuations in electrical circuits. In: Les Houches Session LXIII, Quantum Fluctuations, (1995)Google Scholar
  29. 29.
    Koch, J., Yu, T.M.: Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007)CrossRefADSGoogle Scholar
  30. 30.
    Bishop, Lev S., Chow, J.M., Koch, J., Houck, A.A., Devoret, M.H., Thuneberg, E., Girvin, S.M., Schoelkopf, R.J.: Nonlinear response of the vacuum Rabi resonance. Nat. Phys. 5, 105–109 (2009)CrossRefGoogle Scholar
  31. 31.
    Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)CrossRefADSGoogle Scholar
  32. 32.
    Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120126 (1998)CrossRefGoogle Scholar
  33. 33.
    Eckert, K., Mompart, J., Yi, X.X., Schliemann, J., Bruß, D., Birkl, G., Lewenstein, M.: Quantum computing in optical microtraps based on the motional states of neutral atoms. Phys. Rev. A 66, 042317 (2002)CrossRefADSGoogle Scholar
  34. 34.
    Poyatos, J.F., Cirac, J.I., Zoller, P.: Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390393 (1997)CrossRefADSGoogle Scholar
  35. 35.
    Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbinay, C., Esteve, D., Devoret, M.H.: Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)CrossRefADSGoogle Scholar
  36. 36.
    Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A.-S. F. Obada
    • 1
  • H. A. Hessian
    • 2
  • A.-B. A. Mohamed
    • 2
  • Ali H. Homid
    • 3
  1. 1.Faculty of ScienceAl-Azhar UniversityCairoEgypt
  2. 2.Faculty of ScienceAssiut UniversityAssiutEgypt
  3. 3.Faculty of ScienceAl-Azhar UniversityAssiutEgypt

Personalised recommendations