Quantum Information Processing

, Volume 13, Issue 2, pp 259–271 | Cite as

Quantum discord amplification of fermionic systems in an accelerated frame

  • M. Ramzan


Quantum discord of fermionic systems in the relativistic regime, that is, beyond the single-mode approximation (SMA) is investigated. It is shown that quantum discord is amplified for the fermionic system in non-inertial frames irrespective of the choice of state, region and level of mixedness. This ensures that the phenomenon of amplification can actually happen in the relativistic regime. It is seen that quantum discord converges at infinite acceleration limit, which means that it becomes independent of \(q_{R}\) (Unruh modes) beyond SMA. This implies that most of the tensor product structures already used in the literature to compute quantum field correlations in relativistic quantum information cannot give rise to physical results. The dynamics of quantum discord is investigated under amplitude damping, depolarizing and flipping channels. The vanishing behavior of quantum discord is seen for higher level of decoherence in the infinite acceleration limit. The depolarizing channel dominantly affects the fermionic quantum discord as compared to the amplitude damping channel. It means that the depolarizing channel has most destructive influence on the discord of the fermionic systems. Moreover, the effect of environment on the discord is much stronger than that of the acceleration of non-inertial frames.


Quantum discord Single-mode approximation Fermionic systems Decoherence 


  1. 1.
    Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett 95, 120404 (2005)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Martin-Martinez, E., Garay, L.J., León, J.: Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D 82, 064006 (2010)CrossRefADSGoogle Scholar
  4. 4.
    Martin-Martinez, E., Garay, L.J., León, J.: Quantum entanglement produced in the formation of a black hole. Phys. Rev. D 82, 064028 (2010)CrossRefADSGoogle Scholar
  5. 5.
    Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)CrossRefADSGoogle Scholar
  6. 6.
    Pan, Q., Jing, J.: Degradation of nonmaximal entanglement of scalar and Dirac fields in noninertial frames. Phys. Rev. A 77, 024302 (2008)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Wang, J., Pan, Q., Chen, S., Jing, J.: Entanglement of coupled massive scalar field in background of dilaton black hole. Phys. Lett. B 677, 186 (2009)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Moradi, S.: Distillability of entanglement in accelerated frames. Phys. Rev. A 79, 064301 (2009)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Hwang, M.R., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Montero, M., Martín-Martínez, E.: Entanglement of arbitrary spin fields in non-inertial frames. Phys. Rev. A 84, 012337 (2011)CrossRefADSGoogle Scholar
  11. 11.
    Ramzan, M., Khan, M.K.: Decoherence and entanglement degradation of a qubit-qutrit system in non-inertial frames. Quant. Inf. Process. 11, 443 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2010)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Brown, E.G., et al.: Vanishing geometric discord in non-inertial frames. Phys. Rev. A 86, 032108 (2012)CrossRefADSGoogle Scholar
  14. 14.
    Pan, Q., Jing, J.: Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole. Phys. Rev. D 78, 065015 (2008)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Martin-Martines, E., León, J.: Fermionic entanglement that survives a black hole. Phys. Rev. A 80, 042318 (2009)CrossRefADSGoogle Scholar
  16. 16.
    Martin-Martines, E., León, J.: Quantum correlations through event horizons: fermionic versus bosonic entanglement. Phys. Rev. A 81, 032320 (2010)CrossRefADSGoogle Scholar
  17. 17.
    Bruschi, D.E., et al.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)CrossRefADSGoogle Scholar
  18. 18.
    Montero, M., Martin-Martinez, E.: Fermionic entanglement ambiguity in non-inertial frames. Phys. Rev. A 83, 062323 (2011)CrossRefADSGoogle Scholar
  19. 19.
    Montero, M., Martin-Martinez, E.: Convergence of fermionic field entanglement at infinite acceleration in relativistic quantum information. Phys. Rev. A 85, 024301 (2012)CrossRefADSGoogle Scholar
  20. 20.
    Chang, J., Kwon, Y.: Entanglement behavior of quantum states of fermionic system in accelerated frame. Phys. Rev. A 85, 032302 (2012)CrossRefADSGoogle Scholar
  21. 21.
    Chang, J., Kwek, L.C., Kwon, Y.: Geometric discord of quantum states of fermionic system in accelerated frame. arXiv:1210.1666 [quant-ph] (2012)Google Scholar
  22. 22.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)MathSciNetCrossRefADSMATHGoogle Scholar
  23. 23.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)CrossRefADSGoogle Scholar
  24. 24.
    Zurek, W.H.: Quantum discord and Maxwell’s demons. Phys. Rev. A 67, 012320 (2003)CrossRefADSGoogle Scholar
  25. 25.
    Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)CrossRefADSGoogle Scholar
  26. 26.
    Girolami, G., Adesso, G.: Observable measure of bipartite quantum correlations. Phys. Rev. Lett. 108, 150403 (2012)CrossRefADSGoogle Scholar
  27. 27.
    Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)CrossRefADSGoogle Scholar
  28. 28.
    Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)CrossRefADSGoogle Scholar
  29. 29.
    Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)CrossRefADSGoogle Scholar
  30. 30.
    Shi, M., Yang, W., Jiang, F., Du, J.: Quantum discord of two-qubit rank-2 states. J. Phys. A: Math. Theor. 44, 415304 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Bruschi, D.E., et al.: Particle and anti-particle bosonic entanglement in non-inertial frames. Phys. Rev. D 86, 025026 (2012)CrossRefADSGoogle Scholar
  32. 32.
    Ramzan, M.: Decoherence and multipartite entanglement of non-inertial observers. Chin. Phys. Lett. 29, 020302 (2012)CrossRefADSGoogle Scholar
  33. 33.
    Doukas, J., et al.: Entanglement and discord: accelerated observations of local and global modes. Phys. Rev. A 87, 012306 (2013)CrossRefADSGoogle Scholar
  34. 34.
    Ramzan, M.: Divergence of fermionic correlations under non-Markovian noise in a non-inertial frame. Physica A 392, 5248 (2013)CrossRefADSGoogle Scholar
  35. 35.
    Dragan, Andrzej, et al.: Localized detection of quantum entanglement through the event horizon. Phys. Rev. A 87, 052326 (2013)CrossRefADSGoogle Scholar
  36. 36.
    Alsing, P.M., Fuentes, I.: Observer-dependent entanglement. Class. Q. Grav 29, 224001 (2012)MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    Ramzan, M.: Decoherence dynamics of geometric measure of quantum discord and measurement induced nonlocality for noninertial observers at finite temperature. Quant. Inf. Process. 12, 2721 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  38. 38.
    Fujiwara, A.: Quantum channel identification problem. Phys. Rev. A 63, 042304 (2001)CrossRefADSGoogle Scholar
  39. 39.
    Bennett, C.H., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)CrossRefADSGoogle Scholar
  40. 40.
    Bowen, G., Bose, S.: Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87, 267901 (2001)CrossRefADSGoogle Scholar
  41. 41.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  42. 42.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)MathSciNetCrossRefADSMATHGoogle Scholar
  43. 43.
    Schlosshauer, M.A.: Decoherence and the Quantum-to- Classical Transition. Springer, Berlin (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations