Advertisement

Quantum Information Processing

, Volume 12, Issue 9, pp 3067–3077 | Cite as

Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal

  • Yan-Ling Li
  • Xing XiaoEmail author
Article

Abstract

We consider a weak measurement reversal proposal to recover quantum correlations of two-qubit system under local amplitude damping channels. With weak measurement reversal, we show that quantum correlations do not vanish but preserve a finite value in the limit of the noise strength \(p\rightarrow 1\), which can be attributed to the probabilistic nature of this method. The experimental feasibility of this approach is also discussed in pure optical systems.

Keywords

Quantum correlations Amplitude damping decoherence   Weak measurement reversal 

Notes

Acknowledgments

We thank Z.Y. Xu for his warmhearted help. This work is supported by the Special Funds of the National Natural Science Foundation of China under Grant Nos. 11247006 and 11247207, and by Scientic Research Foundation of Jiangxi Provincial Education Department under Grants No. GJJ12355 and by Natural Science Foundation of Jiangxi under Grants No. 20122BAB212004.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambrige University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Masanes, L., Pironio, S., Acin, A.: Secure device-independent quantum key distribution with causally independent measurement devices. Nat. Commun. 2, 238 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Li, X.Y., Pan, Q., Jing, J.T., Zhang, J., Xie, C.D., Peng, K.C.: Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. Phys. Rev. Lett. 88, 047904 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672–5675 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Ollivier, H., Zurek, W.H.: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Almeida, M.P., et al.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Werlang, T., Souza, S., Fanchini, F.F., Villas Boas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    The weak measurements involved in our discussions are POVM which are different with the post-selected weak measurement proposed by Aharonov et al. in Phys. Rev. Lett. 60, 1351 (1988)Google Scholar
  17. 17.
    Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737–5742 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Sun, Q.Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)CrossRefGoogle Scholar
  24. 24.
    Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    Popescu, S.: Bells inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797–799 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Zhang, Y.S., Huang, Y.F., Li, C.F., Guo, G.C.: Experimental preparation of the Werner state via spontaneous parametric down-conversion. Phys. Rev. A 66, 062315 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Barbieri, M., Martini, F.D., Nepi, G.D., Mataloni, P.: DAriano, G.M., Macchiavello, C.: Detection of entanglement with polarized photons: experimental realization of an entanglement witness. Phys. Rev. Lett. 91, 227901 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Information EngineeringJiangxi University of Science and TechnologyGanzhouChina
  2. 2.College of Physics and Electronic InformationGannan Normal UniversityGanzhouChina

Personalised recommendations