Advertisement

Quantum Information Processing

, Volume 12, Issue 7, pp 2427–2439 | Cite as

Efficient arbitrated quantum signature and its proof of security

  • Qin Li
  • Chengqing Li
  • Dongyang Long
  • Wai Hong Chan
  • Changji Wang
Article

Abstract

In this paper, an efficient arbitrated quantum signature scheme is proposed by combining quantum cryptographic techniques and some ideas in classical cryptography. In the presented scheme, the signatory and the receiver can share a long-term secret key with the arbitrator by utilizing the key together with a random number. While in previous quantum signature schemes, the key shared between the signatory and the arbitrator or between the receiver and the arbitrator could be used only once, and thus each time when a signatory needs to sign, the signatory and the receiver have to obtain a new key shared with the arbitrator through a quantum key distribution protocol. Detailed theoretical analysis shows that the proposed scheme is efficient and provably secure.

Keywords

Quantum cryptography Quantum signature Security analysis 

Notes

Acknowledgments

We thank the anonymous reviewers for their constructive comments that are helpful for the improvement of the paper. This work was supported by National Natural Science Foundation of China (Grant Nos. 61202398, 61100216, and 61105052), Scientific Research Fund of Hunan Provincial Education Department (Grant No. 12C0400), and Science Fund of Xiangtan University (Grant No. 2011XZX16). The work of Wai Hong Chan is partially supported by Internal Research Grant at The Hong Kong Institute of Education (Grant No. RG 66/2011-2012).

References

  1. 1.
    Wiesner, S.: Conjugate coding. SIGACT News 15, 78–88 (1983)CrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers Systems and, Signal Processing, pp. 175–179 (1984)Google Scholar
  3. 3.
    Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Hillery, M., Buzek, V.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Li, Q., Long, D.Y., Chan, W.H., Qiu, D.W.: Sharing a quantum secret without a trusted party. Quantum Inf. Process. 10, 97–106 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Barnum, H., Crepeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 449–458 (2002)Google Scholar
  9. 9.
    Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, article no. 052319 (2004)Google Scholar
  12. 12.
    Gottesman, D., Chuang, I.L.: Quantum digital signatures (2001) ArXiv:quant-ph/0105032Google Scholar
  13. 13.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, article no. 042312 (2002)Google Scholar
  14. 14.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, article no. 054307 (2009)Google Scholar
  15. 15.
    Zou, X.F., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, article no. 042325 (2010)Google Scholar
  16. 16.
    Lee, H., Hong, C., Kim, H., Lim, J., Yang, H.J.: Arbitrated quantum signature scheme with message recovery. Phys. Lett. A 321, 295–300 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Lü, X., Feng, D.G.: An arbitrated quantum message signature scheme. In: Proceedings of the 1st International Symposium on Computational and Information Science, pp. 1054–1060 (2004)Google Scholar
  18. 18.
    Lü, X., Feng, D.G.: Quantum digital signature based on quantum one-way functions. In: Proceedings of the 7th International Conference on Advanced Communication Technology, pp. 514–517 (2005)Google Scholar
  19. 19.
    Wang, J., Zhang, Q., Tang, C.J.: Quantum signature scheme with message recovery. In: Proceedings of the 8th International Conference on Advanced Communication Technology, pp. 1375–1378 (2006)Google Scholar
  20. 20.
    Wang, J., Zhang, Q., Tang, C.J.: Efficient quantum signature protocol of classical messages. J. Commun. 28, 64–68 (2007) (In Chinese)Google Scholar
  21. 21.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Inamori, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41, 599–627 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp. 124–134 (1994)Google Scholar
  25. 25.
    Wang, J., Zhang, Q., Liang, L.M., Tang, C.J.: Comment on: “Arbitrated quantum signature scheme with message recovery”. Phys. Lett. A 347, 262–263 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Li, Q., Du, R.G., Long, D.Y., Wang, C.J., Chan, W.H.: Entanglement enhances the security of arbitrated quantum signature. Int. J. Quantum Inf. 7, 913–925 (2009)zbMATHCrossRefGoogle Scholar
  27. 27.
    Zeng, G.H., Lee, M., Guo, Y., He, G.Q.: Continuous variable quantum signature algorithm. Int. J. Quantum Inf. 5, 553–573 (2007)zbMATHCrossRefGoogle Scholar
  28. 28.
    Wen, X.J., Liu, Y., Sun, Y.: Quantum multi-signature protocol based on teleportation. Z Naturforsch A: Phys. Sci. 62, 147–151 (2007)zbMATHGoogle Scholar
  29. 29.
    Yang, Y.G., Wen, Q.Y.: Quantum threshold group signature. Sci. China Ser. G-Phys. Mech. Astron. 38, 1162 (2008) (In Chinese)Google Scholar
  30. 30.
    Yang, Y.G., Zhou, Z., Teng, Y.W., Wen, Q.Y.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61, 773–778 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, article no. 022344 (2011)Google Scholar
  32. 32.
    Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, article no. 062330 (2011)Google Scholar
  33. 33.
    Hwang, T., Lee, K.C., Li, C.M.: Provably secure three-party authenticated quantum key distribution protocols. IEEE Trans. Dependable Secur. Comput. 4, 71–80 (2007)CrossRefGoogle Scholar
  34. 34.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSCrossRefGoogle Scholar
  35. 35.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Higher Education, Beijing (2003)Google Scholar
  36. 36.
    Bellare, M., Rogaway, P.: In: Proceedings of the 27th ACM Symposium on Theory of Computing, pp. 57–66 (1995)Google Scholar
  37. 37.
    Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) Advances in Cryptology-Eurocrypt’96, Lecture Notes in Computer Science, vol. 1070, pp. 387–398. Springer, Berlin (1996)Google Scholar
  38. 38.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) Advances in Cryptology-Crypto’96, Lecture Notes in Computer Science, vol. 1109, pp. 1–15. Springer, Berlin (1996)Google Scholar
  39. 39.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17, 281–308 (1988)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Qin Li
    • 1
    • 2
  • Chengqing Li
    • 1
    • 2
  • Dongyang Long
    • 3
  • Wai Hong Chan
    • 4
  • Changji Wang
    • 3
  1. 1.College of Information EngineeringXiangtan UniversityXiangtanChina
  2. 2.Key Laboratory of Intelligent Computing and Information Processing of the Ministry of EducationXiangtan UniversityXiangtanChina
  3. 3.Department of Computer ScienceSun Yat-sen UniversityGuangzhouChina
  4. 4.Department of Mathematics and Information TechnologyThe Hong Kong Institute of EducationTai PoHong Kong

Personalised recommendations