Quantum Information Processing

, Volume 12, Issue 5, pp 1947–1956 | Cite as

Influence of the phase damping for two-qubits system in the dispersive reservoir

  • A.-S. F. Obada
  • H. A. Hessian
  • A.-B. A. Mohamed
  • M. Hashem


An analytical solution of the master equation for two qubits-field system in the dispersive reservoir are investigated, the qubits are initially in werner states. Under the influence of the damping we investigate the quantum correlation in a two-qubit based on measurement-induced disturbance (MID). We compare MID and entanglement measured by negativity and illustrate their different characteristics. We find the effect of damping on MID is weaker than negativity. Negativity will experience a sudden transition but this will not happen for MID.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Luo S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301–022305 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Li N., Luo S.: Measurement-induced disturbance and thermal negativity of qutrit-qubit mixed spin chain. Phys. Rev. A 76, 032327–032335 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Datta A., Shaji A., Caves C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502–050505 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Lanyon B.P., Barbieri M., Almeida M.P., White A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501–200504 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Ollivier H., Zurek W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901–017904 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Henderson L., Vedral V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6903 (2001)ADSMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Terhal BM., Horodecki M., Leung D.W., DiVincenzo D.P.: The entanglement of purification. J. Math. Phys. 43, 4286–4298 (2002)ADSMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    DiVincenzo D.P., Horodecki M., Leung D.W., Smolin J.A., Terhal B.M.: Locking classical correlations in quantum states. Phys. Rev. Lett. 92, 067902–067908 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Piani M., Horodecki P., Horodecki R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502–090505 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Wu S., Poulsen U.V., Mølmer K.: Correlations in local measurements on a quantum state, and complementarity as an explanation of nonclassicality. Phys. Rev. A 80, 032319–032330 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Modi K., Paterek T., Son W., Vedral V., Williamson M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501–080504 (2010)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Al-Qasimi, A., James, D.F.V.: A comparison of the attempts of quantum discord and quantum entanglement to capture quantum correlations. 1007, 1814–1817 (2010) arXivGoogle Scholar
  13. 13.
    Galve F., Giorgi G.L., Zambrini R.: Maximally discordant mixed states of two qubits. Phys. Rev. A 83, 012102–012106 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Wei T-C., Nemoto K., Goldbart P.M., Kwiat P.G., Munro W.J., Verstraete F.: Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 67, 022110–022121 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Zheng S.-B., Guo G.-C.: Efficient Scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Bellomo B., Franco R.L., Compagno G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342–032351 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Werlang T., Trippe C., Ribeiro G.A.P., Rigolin G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702–095705 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)ADSMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314–032324 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • A.-S. F. Obada
    • 1
  • H. A. Hessian
    • 2
  • A.-B. A. Mohamed
    • 2
  • M. Hashem
    • 2
  1. 1.Faculty of ScienceAl-Azhar UniversityCairoEgypt
  2. 2.Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations