Quantum Information Processing

, Volume 12, Issue 5, pp 1835–1850 | Cite as

On a three-parameter quantum battle of the sexes cellular automaton

Article

Abstract

The dynamics of a spatial quantum formulation of the iterated battle of the sexes game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The effect of spatial structure is assessed when allowing the players to adopt quantum strategies that are no restricted to any particular subset of the possible strategies.

Keywords

Quantum Games Spatial Cellular automata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso-Sanz R.: A quantum battle of the sexes cellular automaton. Proc. R. Soc. A 468, 3370–3383 (2012)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alonso-Sanz, R.: The spatialized, continuous-valued battle of the sexes. Dyn. Games Appl. 22, 2,2,177–194 (2012)Google Scholar
  3. 3.
    Alonso-Sanz R.: Self-organization in the battle of the sexes. Int. J. Mod. Phys. C 22(1), 1–11 (2011)ADSMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alonso-Sanz R.: Self-organization in the spatial battle of the sexes with probabilistic updating. Phys. A 390, 2956–2967 (2011)CrossRefGoogle Scholar
  5. 5.
    Alonso-Sanz R.: Dynamical Systems with Memory. World Scientific, Singapore (2011)Google Scholar
  6. 6.
    Benjamin S.C., Hayden P.M.: Comment on “Quantum games and quantum strategies”. Phys. Rev. Lett. 87(6), 069801 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Binmore K.: Fun and Games. D.C. Heath, Lexington (1992)MATHGoogle Scholar
  8. 8.
    Dieckmann U., Law R., Metz J.A.J.: The Geometry of Ecological Interactions. Simplifying Spatial Complexity. Cambridge University Press, IIASA, Cambridge (2000)CrossRefGoogle Scholar
  9. 9.
    Du J.F., Xu X.D., Li H., Zhou X., Han R. et al.: Entanglement playing a dominating role in quantum games. Phys. Lett. A 89(1–2), 9–15 (2001)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Du J.F., Li H., Xu X.D., Zhou X., Han R.: Phase-transition-like behaviour of quantum games. J. Phys. A Math. Gen. 36(23), 6551–6562 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Eisert J., Wilkens M., Lewenstein M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077–3080 (1999)ADSMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Flitney A.P., Abbott D.: An introduction to quantum game theory. Fluctuation Noise Lett. 2(4), R175–R187 (2002)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Flitney A.P., Abbott D.: Advantage of a quantum player over a classical one in 2 × 2 quantum games. Proc. R. Soc. Lond. A 459(2038), 2463–2474 (2003)ADSMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Flitney A.P., Hollengerg L.C.L.: Nash equilibria in quantum games with generalized two-parameter strategies. Phys. Lett. A 363, 381–388 (2007)ADSMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fra̧ckiewicz P.: The ultimate solution to the quantum battle of the sexes game. J. Phys. A Math. Theor. 42(36), 365305 (2009)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Harsanyi J., Selten R.: A General Theory of Equilibrium Selection in Games. The MIT Press, Cambridge (1988)MATHGoogle Scholar
  17. 17.
    Hofbauer J., Sigmund K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (2003)Google Scholar
  18. 18.
    Marinatto L., Weber T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000)ADSMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Nawaz, A.,Toor, A.H.: Dilemma and quantum battle of sexes. J. Phys. A Math. Gen. 446, 37,15,4437–4443 (2004)Google Scholar
  20. 20.
    Nawaz A., Toor A.H.: Generalized quantization scheme for two-person non-zero sum games. J. Phys. A Math. Gen. 42(36), 365305 (2004)Google Scholar
  21. 21.
    Owen G.: Game Theory. Academic Press, London (1995)Google Scholar
  22. 22.
    Schiff J.L.: Cellular Automata: A Discrete View of the World. Wiley, London (2008)MATHGoogle Scholar
  23. 23.
    Wiesner, K.: Quantum Cellular automata. http://arxiv.org/abs/0808.0679 (2009)

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Universidad Politecnica de Madrid, ETSI Agrónomos (Estadística, GSC) C. UniversitariaMadridSpain

Personalised recommendations