Quantum Information Processing

, Volume 12, Issue 4, pp 1781–1785 | Cite as

Adapting the traveling salesman problem to an adiabatic quantum computer

  • Richard H. Warren


We show how to guide a quantum computer to select an optimal tour for the traveling salesman. This is significant because it opens a rapid solution method for the wide range of applications of the traveling salesman problem, which include vehicle routing, job sequencing and data clustering.


Traveling salesman problem Adiabatic quantum computer Optimal tour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aharonov, D., et al.: Adiabatic quantum computation is equivalent to standard quantum computation. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 42–51 (2004)Google Scholar
  2. 2.
    Cao Z., Elgart A.: On the efficiency of Hamiltonian-based quantum computation for low-rank matrices. J. Math. Phys. 53, 032201 (2012)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Cook W.J.: In Pursuit of the Traveling Salesman. Princeton University Press, Princeton (2012)zbMATHGoogle Scholar
  4. 4.
    Davenport, D.M., et al.: Quantum computing is here to stay. Lockheed Martin poster report at NASA meeting (September, 2011)Google Scholar
  5. 5.
    Hopfield J.J., Tank D.W.: Neural computation of decisions in optimization problems. Biol. Cybernet. 52, 141–152 (1985)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Karimi K. et al.: Investigating the performance of an adiabatic quantum optimization processor. Quantum Inf. Process. 11, 77–88 (2012)CrossRefGoogle Scholar
  7. 7.
    Kochenberger G.A. et al.: A unified modeling and solution framework for combinatorial optimization problems. OR Spectr. 26, 237–250 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Laporte G.: A concise guide to the traveling salesman problem. J. Oper. Res. Soc. 61, 35–40 (2010)zbMATHCrossRefGoogle Scholar
  9. 9.
    Warren R.H.: Special cases of the traveling salesman problem. Appl. Math. Comput. 60, 171–177 (1994)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Lockheed Martin CorporationKing of PrussiaUSA
  2. 2.Glen MillsUSA

Personalised recommendations