Advertisement

Quantum Information Processing

, Volume 13, Issue 1, pp 59–70 | Cite as

The quantum cryptographic switch

  • N. Srinatha
  • S. Omkar
  • R. Srikanth
  • Subhashish Banerjee
  • Anirban PathakEmail author
Article

Abstract

We illustrate the principle of a cryptographic switch for a quantum scenario, in which a third party (Charlie) can control to a continuously varying degree the amount of information the receiver (Bob) receives, after the sender (Alice) has sent her information through a quantum channel. Suppose Charlie transmits a Bell state to Alice and Bob. Alice uses dense coding to transmit two bits to Bob. Only if the 2-bit information corresponding to the choice of the Bell state is made available by Charlie to Bob can the latter recover Alice’s information. By varying the amount of information Charlie gives, he can continuously alter the information recovered by Bob. The performance of the protocol as subjected to the squeezed generalized amplitude damping channel is considered. We also present a number of practical situations where a cryptographic switch would be of use.

Keywords

Quantum communication Quantum cryptography Secure communication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C.H., Brassard, G.: “Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. Bangalore (1984)Google Scholar
  2. 2.
    Ekert A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)MathSciNetCrossRefADSzbMATHGoogle Scholar
  3. 3.
    Bennett C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)MathSciNetCrossRefADSzbMATHGoogle Scholar
  4. 4.
    Hillery M., Buzek V., Bertaiume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Shimizu K., Imoto N.: Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys. Rev. A 60, 157–166 (1999)CrossRefADSGoogle Scholar
  6. 6.
    Bostrom K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)CrossRefADSGoogle Scholar
  7. 7.
    Goldenberg L., Vaidman L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239–1243 (1995)MathSciNetCrossRefADSzbMATHGoogle Scholar
  8. 8.
    Lucamarini M., Mancini S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Long G. et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251–272 (2007)CrossRefADSGoogle Scholar
  10. 10.
    Li X.H. et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354–1359 (2006)Google Scholar
  11. 11.
    Yan F.L., Zhang X.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75–78 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Man Z.X., Zhang Z.J., Li Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18–21 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Zhu A.D., Xia Y., Fan Q.B., Zhang S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Tsai C.W., Hsieh C.R., Hwang T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779–783 (2011)CrossRefADSGoogle Scholar
  15. 15.
    Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)MathSciNetCrossRefADSzbMATHGoogle Scholar
  16. 16.
    Adhikari, S., Chakrabarty, I., Agrawal, P.: Probabilistic secret sharing through noisy quantum channels, arXiv:1012.5570v2Google Scholar
  17. 17.
    Jia H.Y., Wen Q.Y., Song T.T., Gao F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545 (2011)CrossRefADSGoogle Scholar
  18. 18.
    Giannotti F., Pedreschi D.: Mobility, Data Mining and Privacy: Geographic Knowledge Discovery. Springer, New York (2008)CrossRefGoogle Scholar
  19. 19.
    Brassard G., Broadent A., Fitzsimons J., Gambs S.: Anonymous quantum communication. Lect. Notes Comput. Sci. 4833, 460–473 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  21. 21.
    Srikanth R., Banerjee S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • N. Srinatha
    • 1
  • S. Omkar
    • 1
  • R. Srikanth
    • 1
    • 2
  • Subhashish Banerjee
    • 3
  • Anirban Pathak
    • 4
    • 5
    Email author
  1. 1.Poornaprajna Institute of Scientific ResearchBengaluruIndia
  2. 2.Raman Research InstituteBengaluruIndia
  3. 3.Indian Institute of Technology RajasthanJodhpurIndia
  4. 4.Jaypee Institute of Information TechnologyNoidaIndia
  5. 5.RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations