Quantum Information Processing

, Volume 12, Issue 2, pp 1351–1363 | Cite as

Noisy relativistic quantum games in noninertial frames



The influence of noise and of Unruh effect on quantum Prisoners’ dilemma is investigated both for entangled and unentangled initial states. The noise is incorporated through amplitude damping channel. For unentangled initial state, the decoherence compensates for the adverse effect of acceleration of the frame and the effect of acceleration becomes irrelevant provided the game is fully decohered. It is shown that the inertial player always out scores the noninertial player by choosing defection. For maximally entangled initially state, we show that for fully decohered case every strategy profile results in either of the two possible equilibrium outcomes. Two of the four possible strategy profiles become Pareto optimal and Nash equilibrium and no dilemma is leftover. It is shown that other equilibrium points emerge for different region of values of decoherence parameter that are either Pareto optimal or Pareto inefficient in the quantum strategic spaces. It is shown that the Eisert et al. (Phys Rev Lett 83:3077, 1999) miracle move is a special move that leads always to distinguishable results compare to other moves. We show that the dilemma like situation is resolved in favor of one player or the other.


Quantum games Decoherence: Unruh effect Noninertial frames 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meyer D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Eisert J., Wilkens J., Lewenstein M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Marinatto L., Weber T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Li H., Du J., Massar S.: Continuous-variable quantum games. Phys. Lett. A 306, 73–78 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Lo C.F., Kiang D.: Quantum Bertrand duopoly with differentiated products. Phys. Lett. A 321, 94–98 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Flitney A.P., Abbott D.: Quantum version of the Monty Hall problem. Phys. Rev. A 65, 062318 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Iqbal A., Toor A.H.: Backwards-induction outcome in a quantum game. Phys. Rev. A 65, 052328 (2002)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Flitney A.P., Ng J., Abbott D.: Quantum Parrondo’s games. Physica A 314, 35–42 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Goldenberg L., Vaidman L., Wiesner S.: Quantum gambling. Phys. Rev. Lett. 82, 3356–3359 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Khan S., Ramzan M., Khan M.K.: Quantum model of Bertrand duopoly. Chin. Phys. Lett. 27, 080302 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Chen L.K., Ang H., Kiang D., Kwek L.C., Lo C.F.: Quantum prisoner dilemma under decoherence. Phys. Lett. A 316, 317–323 (2003)ADSMATHCrossRefGoogle Scholar
  12. 12.
    Flitney A.P., Abbott D.: Quantum games with decoherence. J. Phys. A Math. Gen. 38, 449–459 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Khan S., Ramzan M., Khan M.K.: Quantum Parrondo’s games under decoherence. Int. J. Theo. Phys. 49, 31–41 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Alsing P.M., Fuentes-Schuller I., Mann R.B., Tessier T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Ling Y., He S., Qiu W., Zhang H.: Quantum entanglement of electromagnetic field in non-inertial reference frames. J. Phys. A Math. Theor. 40, 9025–9032 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Gingrich R.M., Adami C.: Quantum entanglement of moving bodies. Phys. Rev. Lett. 89, 270402 (2002)CrossRefGoogle Scholar
  17. 17.
    Pan Q., Jing J.: Degradation of nonmaximal entanglement of scalar and dirac fields in noninertial frames. Phys. Rev. A 77, 024302 (2008)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Fuentes-Schuller I., Mann R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Terashima H., Ueda M.: Relativistic Einstein-Podolsky-Rosen correlation and Bell’s inequality. Int. J. Quantum Inf. 1, 93–114 (2003)MATHCrossRefGoogle Scholar
  20. 20.
    Khan S., Khan M.K.: Open quantum systems in noninertial frames. J. Phys. A Math. Theor. 44, 045305 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Wang J., Jing J.: Quantum decoherence in noninertial frames. Phys. Rev. A 82, 032324 (2010)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Khan S.: Entanglement of tripartite states with decoherence in non-inertial frames. J. Mod. Opt. 59, 250–258 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Khan S., Khan M.K.: Relativistic quantum games in noninertial frames. J. Phys. A Math. Theor. 44, 355302 (2011)CrossRefGoogle Scholar
  24. 24.
    Takagi S.: Vacuum noise and stress induced by uniform acceleration. Prog. Theor. Phys. Suppl. 88, 1–142 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    Alsing P.M., McMahon D., Milburn G.J.: Teleportation in a non-inertial frame. J. Opt. B Quantum Semiclass. Opt. 6, S834–S843 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Aspachs M., Adesso G., Fuentes I.: Optimal quantum estimation of the Unruh-Hawking effect. Phys. Rev. Lett. 105, 151301 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Martin-Martinez E., Garay L.J., Leon J.: Quantum entanglement produced in the formation of a black hole. Phys. Rev. D 82, 064028 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Bruschi D.E., Louko J., Martin-Martinez E., Dragan A., Fuentes I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Davies P.C.W.: Scalar production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609–616 (1975)ADSCrossRefGoogle Scholar
  30. 30.
    Unruh W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976)ADSCrossRefGoogle Scholar
  31. 31.
    Benjamin S.C., Hayden P.M.: Quantum games and quantum strategies. Phys. Rev. Lett. 87, 06980 (2001)CrossRefGoogle Scholar
  32. 32.
    Flitney A.P., Hollenberg L.C.L.: Nash equilibria in quantum games with generalized two-parameter strategies. Phys. Lett. A 363, 381–388 (2007)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsCOMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Department of PhysicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations