Advertisement

Quantum Information Processing

, Volume 12, Issue 2, pp 805–813 | Cite as

Quantum Bayesian implementation

  • Haoyang Wu
Article

Abstract

Mechanism design is a reverse problem of game theory. Nash implementation and Bayesian implementation are two important parts of mechanism design theory. The former one corresponds to a setting with complete information, whereas the latter one corresponds to a setting with incomplete information. A recent work Wu (Int J Quantum Inf 9:615–623, 2011) shows that when an additional condition is satisfied, the traditional sufficient conditions for Nash implementation will fail in a quantum domain. Inspired by this work, in this paper we will propose that the traditional sufficient conditions for Bayesian implementation will also fail if agents use quantum strategies to send messages to the designer through channels (e.g., Internet, cable etc) and two additional conditions are satisfied.

Keywords

Quantum strategy Mechanism design Bayesian implementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maskin E.: Nash equilibrium and welfare optimality. Rev. Econ. Stud. 66, 23–38 (1999)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Postlewaite A., Schmeidler D.: Implementation in differential information economies. J. Econ. Theory 39, 14–33 (1986)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Palfrey T.R., Srivastava S.: Implementation with incomplete information in exchange economies. Econometrica 57, 115–134 (1989)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Jackson M.O.: Bayesian implementation. Econometrica 59, 461–477 (1991)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Eisert J., Wilkens M., Lewenstein M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Wu, H.: Quantum mechanism helps agents combat “bad” social choice rules. Int. J. Quantum Inf. 9, 615–623 (2011). http://arxiv.org/abs/1002.4294
  7. 7.
    Serrano R.: The theory of implementation of social choice rules. SIAM Rev. 46, 377–414 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Matsushima H.: Bayesian monotonicity with side payments. J. Econ. Theory 59, 107–121 (1993)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Flitney A.P., Hollenberg L.C.L.: Nash equilibria in quantum games with generalized two-parameter strategies. Phys. Lett. A 363, 381–388 (2007)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Telser L.G.: A theory of self-enforcing agreements. J. Business. 53, 27–44 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Wan-Dou-Miao Research Lab.ShanghaiChina

Personalised recommendations