Quantum Information Processing

, Volume 12, Issue 2, pp 805–813 | Cite as

Quantum Bayesian implementation

  • Haoyang Wu


Mechanism design is a reverse problem of game theory. Nash implementation and Bayesian implementation are two important parts of mechanism design theory. The former one corresponds to a setting with complete information, whereas the latter one corresponds to a setting with incomplete information. A recent work Wu (Int J Quantum Inf 9:615–623, 2011) shows that when an additional condition is satisfied, the traditional sufficient conditions for Nash implementation will fail in a quantum domain. Inspired by this work, in this paper we will propose that the traditional sufficient conditions for Bayesian implementation will also fail if agents use quantum strategies to send messages to the designer through channels (e.g., Internet, cable etc) and two additional conditions are satisfied.


Quantum strategy Mechanism design Bayesian implementation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maskin E.: Nash equilibrium and welfare optimality. Rev. Econ. Stud. 66, 23–38 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Postlewaite A., Schmeidler D.: Implementation in differential information economies. J. Econ. Theory 39, 14–33 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Palfrey T.R., Srivastava S.: Implementation with incomplete information in exchange economies. Econometrica 57, 115–134 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Jackson M.O.: Bayesian implementation. Econometrica 59, 461–477 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Eisert J., Wilkens M., Lewenstein M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Wu, H.: Quantum mechanism helps agents combat “bad” social choice rules. Int. J. Quantum Inf. 9, 615–623 (2011).
  7. 7.
    Serrano R.: The theory of implementation of social choice rules. SIAM Rev. 46, 377–414 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Matsushima H.: Bayesian monotonicity with side payments. J. Econ. Theory 59, 107–121 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Flitney A.P., Hollenberg L.C.L.: Nash equilibria in quantum games with generalized two-parameter strategies. Phys. Lett. A 363, 381–388 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Telser L.G.: A theory of self-enforcing agreements. J. Business. 53, 27–44 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Wan-Dou-Miao Research Lab.ShanghaiChina

Personalised recommendations