Quantum Information Processing

, Volume 12, Issue 1, pp 569–576 | Cite as

Increasing the security of the ping–pong protocol by using many mutually unbiased bases

  • Piotr Zawadzki
  • Zbigniew Puchała
  • Jarosław Adam MiszczakEmail author


In this paper we propose an extended version of the ping–pong protocol and study its security. The proposed protocol incorporates the usage of mutually unbiased bases in the control mode. We show that, by increasing the number of bases, it is possible to improve the security of this protocol. We also provide the upper bounds on eavesdropping average non-detection probability and propose a control mode modification that increases the attack detection probability.


Quantum cryptography Quantum secure direct communication Ping–pong protocol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beige A., Englert B.G., Kurtsiefer C., Weinfurter H.: Secure communication with a publicly known key. Act. Phys. Pol. A 101(3), 357–368 (2002)Google Scholar
  2. 2.
    Boström K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187,902 (2002). doi: 10.1103/PhysRevLett.89.187902 CrossRefGoogle Scholar
  3. 3.
    Brierley S., Weigert S., Bengtsson I.: All mutually unbiased bases in dimensions two to five. Quant. Inf. Comput. 10, 0803–0820 (2010)MathSciNetGoogle Scholar
  4. 4.
    Cai Q.Y., Li B.W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601–603 (2004). doi: 10.1088/0256-307X/21/4/003 ADSCrossRefGoogle Scholar
  5. 5.
    Cai Q.Y., Li B.W.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. Lett. 69(5), 054,301 (2004). doi: 10.1103/PhysRevA.69.054301 Google Scholar
  6. 6.
    Deng F.G., Li X.H., Li C.Y., Zhou P., Zhou H.Y.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359(5), 359–365 (2006). doi: 10.1016/j.physleta.2006.06.054 MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Durt T.: About mutually unbiased bases in even and odd prime power dimensions. J. Phys. A Math. Gen. 38, 5267 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Durt T., Englert B.G., Bengtsson I., Życzkowski K.: On mutually unbiased bases. Int. J. Quantum Inf. 8(4), 535–640 (2010)zbMATHCrossRefGoogle Scholar
  9. 9.
    Durt T., Kaszlikowski D., Chen J.L., Kwek L.C.: Security of quantum key distributions with entangled qudits. Phys. Rev. A. 69(3), 032313 (2004). doi: 10.1103/PhysRevA.69.032313 ADSCrossRefGoogle Scholar
  10. 10.
    Eusebi A., Mancini S.: Deterministic quantum distribution of a d-ary key. Quantum Inform. Comput. 9(11 & 12), 950–962 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Horn R.A., Johnson C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)zbMATHCrossRefGoogle Scholar
  12. 12.
    Korchenko O., Vasiliu Y., Gnatyuk S.: Modern quantum technologies of information security against cyberterrorist attacks. Aviation 14(2), 58–69 (2010). doi: 10.3846/aviation.2010.10 CrossRefGoogle Scholar
  13. 13.
    Liu X.S., Long G.L., Tong D.M., Li F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022,304 (2002). doi: 10.1103/PhysRevA.65.022304 Google Scholar
  14. 14.
    Lucamarini M., Mancini S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140,501 (2005). doi: 10.1103/PhysRevLett.94.140501 CrossRefGoogle Scholar
  15. 15.
    McNulty, D., Weigert, S.: All mutually unbiased product bases in dimension six (2011).
  16. 16.
    Schur J.: Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen veränderlichen. J. Reine Angew. Math. 1911(140), 1–28 (1911). doi: 10.1515/crll.1911.140.1 CrossRefGoogle Scholar
  17. 17.
    Shi G.F., Xi X.Q., Hu M.L., Yue R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010). doi: 10.1016/j.optcom.2010.01.007 ADSCrossRefGoogle Scholar
  18. 18.
    Shimizu K., Tamaki K., Fukasaka H.: Two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair. Phys. Rev. A 80(2), 022,323 (2009). doi: 10.1103/PhysRevA.80.022323 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Vasiliu, E., Nikolaenko, S.: Synthesis if the secure system of direct message transfer based on the ping–pong protocol of quantum communication. Scientific works of the Odessa national academy of telecommunications named after O.S. Popov (1), 83–91 (2009) (in Russian)Google Scholar
  20. 20.
    Vasiliu E.V.: Non-coherent attack on the ping–pong protocol with completely entangled pairs of qutrits. Quantum Inf. Process. 10, 189–202 (2011). doi: 10.1007/s11128-010-0188-8 MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Wang C., Deng F.G., Li Y.S., Liu X.S., Long G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044,305 (2005). doi: 10.1103/PhysRevA.71.044305 Google Scholar
  22. 22.
    Wang J., Zhang Q., Tang C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006). doi: 10.1016/j.physleta.2006.05.035 ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Zawadzki, P.: Security of ping–pong protocol based on pairs of completely entangled qudits. Quantum Inf. Process. (2011). doi: 10.1007/s11128-011-0307-1. (published online)
  24. 24.
    Zawadzki, P.: Improving security of the ping–pong protocol. Quantum Inf. Process. (2012). doi: 10.1007/s11128-012-0363-1. (published online)
  25. 25.
    Zhan Y.B., Zhang L.L., Zhang Q.Y.: Quantum secure direct communication by entangled qutrits and entanglement swapping. Opt. Commun. 282(23), 4633–4636 (2009). doi: 10.1016/j.optcom.2009.08.024 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Piotr Zawadzki
    • 1
  • Zbigniew Puchała
    • 2
  • Jarosław Adam Miszczak
    • 2
    Email author
  1. 1.Institute of ElectronicsSilesian University of TechnologyGliwicePoland
  2. 2.Institute of Theoretical and Applied InformaticsPolish Academy of SciencesGliwicePoland

Personalised recommendations