Quantum Information Processing

, Volume 12, Issue 1, pp 449–457 | Cite as

A scheme for generating a multi-photon NOON state based on cavity QED

  • Xiao-Qi Xiao
  • Jun Zhu
  • Guangqiang He
  • Guihua Zeng


A scheme for generating the two-mode maximally path-entangled state of multi-photon, i.e., the so-called NOON state, through use of cavity QED techniques is proposed. In the present scheme, the entanglement between two spatial modes is established by guiding a laser pulse through a single atom cavity firstly, and then is transferred to the entanglement of the fields of the two cavities. The multi-photon state is generated in either one of the cavities via the strong atom-light interaction stimulated by the laser pulse adiabatically. Consequently, the desired optical NOON state is obtained.


Controlled SWAP gate Stimulated Raman adiabatic passage Multi-photon NOON state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bollinger J.J., Itano W.M., Wineland D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Ou Z.Y.: Fundamental quantum limit in precision phase measurement. Phys. Rev. A 55, 2598–2609 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Boto A.N., Kok P., Abrams D.S., Braunstein S.L., Williams C.P., Dowling J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Hofmann H.F.: Generation of highly nonclassical n-photon polarization states by superbunching at a photon bottleneck. Phys. Rev. A 70, 023812(1-7) (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Shafiei F., Srinivasan P., Ou Z.Y.: Generation of three-photon entangled state by quantum interference between a coherent state and parametric down-conversion. Phys. Rev. A 70, 043803 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Wang H., Kobayashi T.: Phase measurement at the Heisenberg limit with three photons. Phys. Rev. A 71, 021802 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Hong C.K., Ou Z.Y., Mandel L.: Measurement of subpicosecond time intervals between two photons by inerference. Phys. Rev. Lett. 59, 2044–2046 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    Mitchell M.W., Lundeen J.S., Steinberg A.M.: Super-resolving phase measurements with a multiphoton entangled state. Nature (London) 429, 161–164 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Walther P., Pan J.-W., Aspelmeyer M., Ursin R., Gasparoni S., Zeilinger A.: Heisenber-limit interferometry with four-wave mixers operating in a nonlinear regime. Nature (London) 429, 158 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Gerry C.C.: Generation of maximally entangled photonic states with a quantum-optical Fredkin gate. Phys. Rev. A 61, 043811 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Gerry C.C., Campos R.A.: Bootstrapping approach for generating maximally path-entangled photon states. Phys. Rev. A 64, 063814 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Kapale K.T., Dowling J.P.: Bootstrapping approach for generating maximally path-entangled photon states. Phys. Rev. Lett. 99, 053602 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Islam, R., Ikram, M., Saifl, F.: Engineering maximally entangled N-photon NOON field states using an atom interferometer based on Bragg regime cavity QED. J. Phys. B. At. Mol. Opt. Phys. 40, 1359–1368 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Saif, F., Islam, R., Khosa, A.H.: An enginering two-mode field NOON state in cavity QED. J. Phys. B. At. Mol. Opt. Phys. 43, 015501 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Kuhn A., Hennrich M., Bondo T., Rempe G.: Controlled generation of single photons from a strongly coupled atom-cavity system. Appl. Phys. B 69, 373–377 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Brown K.R., Dani K.M., Stamper-Kurn D.M., Whaley K.B.: Deterministic optical Fock-state generation. Phys. Rev. A 67, 043818 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Kuhn A., Hennrich M., Rempe G.: Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Walls D.F., Milburn G.J.: Quantum Optics. Springer, Berlin (1994)zbMATHGoogle Scholar
  19. 19.
    Wang B., Duan L.-M.: Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation. Phys. Rev. A 75, 050304 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Kimble H.J.: Strong interactions of single atoms and photons in cavity QED. Phys. Scripta. T76, 127–137 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xiao-Qi Xiao
    • 1
  • Jun Zhu
    • 1
  • Guangqiang He
    • 1
  • Guihua Zeng
    • 1
  1. 1.State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory on Navigation and Location-based Service, Department of Electronic EngineeringShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations