Quantum Information Processing

, Volume 11, Issue 6, pp 1961–1968 | Cite as

Topological order in 1D Cluster state protected by symmetry

Letter to the Editor

Abstract

We demonstrate how to construct the Z2 × Z2 global symmetry which protects the ground state degeneracy of cluster states for open boundary conditions. Such a degeneracy ultimately arises because the set of stabilizers do not span a complete set of integrals of motion of the cluster state Hamiltonian for open boundary conditions. By applying control phase transformations, our construction makes the stabilizers into the Pauli operators spanning the qubit Hilbert space from which the degeneracy comes.

Keywords

Cluster state Topological order in many-body quantum systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Raussendorf R., Browne D.E., Briegel H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(1–32), 022312 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Nielsen M.A.: Cluster-state quantum computation. Rep. Math. Phys. 57, 147–161 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Nielsen M., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  5. 5.
    Farhi, E., Goldstone, J., Gutmann, S., Sipse, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106v1 (2000).Google Scholar
  6. 6.
    Das Sarma, S., Freedman, M., Nayak, C.: Topologically protected qubits from a possible non-abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 166802 4 pp (2005)Google Scholar
  7. 7.
    Nayak C., Simon S.H., Stern A., Freedman M., Das Sarma S.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Wen X.: Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405–473 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Affleck I. et al.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    Kitaev, A., Laumann, C.: Topological phases and quantum computation, arXiv:0904.2771 (2009)Google Scholar
  11. 11.
    Brown, B.J., Son, W., Kraus, C.V., Fazio, R., Vedral, V.: Generating topological order from a two-dimensional cluster state using a duality mapping. New J. Phys. 13, 065010 13 pp (2011)Google Scholar
  12. 12.
    Van den Nest, M., Miyake, Dür, A., Briegel, W., Hans, J.: Universal resources for measurement-based quantum computation. Phys. Rev. Lett. 97, 150504 4 pp (2006)Google Scholar
  13. 13.
    Markham D., Miyake A., Virmani S.: Entanglement and local information access for graph states. New J. Phys. 9, 194 (2007)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Chen, X., Gu, Z-C., Wen, X-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 28 pp (2010)Google Scholar
  15. 15.
    Chen, X., Gu, Z-C., Wen, X-G.: Classification of gapped symmetric phases in one-dimensional spin systems, ibid. Phys. Rev. B 83, 035107 19 pp (2011)Google Scholar
  16. 16.
    Chen, X., Gu, Z-C., Wen, X-G.: Towards a complete classification of 1D gapped quantum phases in interacting spin systems ibid arXiv:1103.3323 15 pp (2011)Google Scholar
  17. 17.
    den Nijs M., Rommelse K.: Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B 40, 4709–4734 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    Pollmann, F., Berg, E., Turner, A.M., Oshikawa, M.: Symmetry protection of topological order in one-dimensional quantum spin systems, arXiv:0909.4059v2 (2011)Google Scholar
  19. 19.
    Kou, S-P., Wen, X-G.: Translation-symmetry-protected topological orders in quantum spin systems. Phys. Rev. B 80, 224406 11 pp (2009)Google Scholar
  20. 20.
    Miyake, A.: Quantum computation on the edge of a symmetry-protected topological order. Phys. Rev. Lett. 105, 040501 4 pp (2010)Google Scholar
  21. 21.
    Son, W., Amico, L., Fazio, R., Hamma, A., Pascazio, S., Vedral, V.: Quantum phase transition between cluster and antiferromagnetic states. Europhys. Lett. 95, 5001 5 pp (2011)Google Scholar
  22. 22.
    Smacchia, P. et al.: Statistical mechanics of the cluster Ising model. Phys. Rev. A 84, 022304 12 pp (2011)Google Scholar
  23. 23.
    Gottesman D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Haldane F.D.M.: O(3) nonlinear s model and the topological distinction between integer- and half-integer-spin antiferromagnets in two dimensions. Phys. Rev. Lett. 61, 1029–1032 (1988)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Schollwöck, U. (eds) et al.: Quantum Magnetism. Springer, Berlin (2004)Google Scholar
  26. 26.
    Gu Z.-G., Wen X.G.: Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B 80, 155131 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Doherty, A.C., Bartlett, S.D.: Identifying phases of quantum many-body systems that are universal for quantum computation. Phys. Rev. Lett. 103, 020506 4 pp (2009)Google Scholar
  28. 28.
    Skrøvseth, S.O., Bartlett, S.D.: Phase transitions and localizable entanglement in cluster-state spin chains with Ising couplings and local fields. Phys. Rev. A 80, 022316 10 pp (2009)Google Scholar
  29. 29.
    Bartlett, S.D., Rudolph, T.: Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation. Phys. Rev. A 74, 040302(R) 4 pp (2006)Google Scholar
  30. 30.
    Nussinov, Z., Ortiz, G.: Autocorrelations and thermal fragility of anyonic loops in topologically quantum ordered systems. Phys. Rev. B 77, 064302 16 pp (2008)Google Scholar
  31. 31.
    Nussinov Z., Ortiz G.: A symmetry principle for topological quantum order. Ann. Phys. 324, 977–1057 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    Cobanera E., Nussinov Z., Ortiz G.: The bond-algebraic approach to dualities. Adv. Phys. 60, 679–798 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsSogang UniversitySeoulKorea
  2. 2.CNR-MATIS-IMM & Dipartimento di Fisica e Astronomia Universitá di CataniaCataniaItaly
  3. 3.Center for Quantum TechnologyNational University of SingaporeSingaporeSingapore
  4. 4.Department of PhysicsNational University of SingaporeSingaporeSingapore

Personalised recommendations