Quantum Information Processing

, Volume 12, Issue 3, pp 1417–1428 | Cite as

Conditional phase shift for quantum CCNOT operation

  • G. P. Miroshnichenko
  • A. I. Trifanov


We suggest the improvement of description methods for quantum phase gate implementation based on cavity QED. Qubits are encoded into two lowest Fock states. Three qubit phase transformation is resulted from the interaction between Rydberg atom and three modes of cavity electromagnetic field. Evolution of conditional field states after atom measurement is described by Kraus operators. We show that one of these operators corresponds to conditional evolution without quantum jumps and is very convenient for phase gate implementation. Also we describe cavity based generating EPR pair from certain initially disentangled state.


Quantum phase gate Cavity QED Rydberg atom Conditional field state Kraus transformer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ladd T.D., Jelezko F., Laflamme R., Nakamura Y., Monroe C., O’Brien J.L.: Quantum computers. Nature 464, 45–53 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Kilin S.Ya.: Quantum information. Physics-Uspekhi 169(5), 507–527 (1999)CrossRefGoogle Scholar
  3. 3.
    Braunstein, S.L., Lo, H.-K., Kok, P. (eds.): Scalable Quantum Computers: Paving the Way to Realization. Wiley-VCH, Verlag, Berlin (2001)Google Scholar
  4. 4.
    Bouwmeester, D., Ekert, A., Zeilinger, A. (eds): The Physics of Quantum Information. Springer, Berlin (2000)zbMATHGoogle Scholar
  5. 5.
    Childs A.M., van Dam W.: Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82, 1–52 (2010)ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Gisin N., Ribordy G., Tittel W., Zinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Peres A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  8. 8.
    DiVincenzo D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    O’Brien J.: Optical quantum computing. Science 318, 1567–1570 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    O’Brien J.L., Furusawa A., Vuc’kovic’ J.: Photonic quantum technologies. Nat. Photonics. 3, 687–695 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Kok P., Munro W.J., Nemoto K., Ralph T.C., Dowling J.P., Milburn G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Fleischhauer M., Imamoglu A., Marangos J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Kok P.: Effects of self-phase-modulation on weak nonlinear optical quantum gates. Phys. Rev. A. 77, 013808 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Pack M.V., Camacho R.M., Howell J.C.: Transients of the electromagnetically-induced-transparency-enhanced refractive Kerr nonlinearity. Phys. Rev. A. 76, 033835 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Duan L.M., Kimble H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Turchette Q.A., Hood C.J., Lange W., Mabuchi H., Kimble H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75(25), 4710–4713 (1995)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Ottaviani C., Rebić S., Vitali D., Tombesi P.: Quantum phase-gate operation based on nonlinear optics: full quantum analysis. Phys. Rev. A. 73, 010301 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    O’Brien J.L., Pryde G.J., White A.G., Ralph T.C., Branning D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Raimond J.M., Brune M., Haroche S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Zubairy M.S., Kim M., Scully M.O.: Cavity-QED-based quantum phase gate. Phys. Rev. A. 68, 033820 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Giovanetti V., Vitali D., Tombesi P., Ekert A.: Scalable quantum computation with cavity QED systems. Phys. Rev. A. 62(3), 032306 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    Chang J-T., Zubairy M.S.: Three-qubit phase gate based on cavity quantum electrodynamics. Phys. Rev. A. 77, 012329 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Yong H., Nian-Quan J.: Efficient atomic one-qubit phase gate realized by a cavity QED and identical atoms system. Commun. Theor. Phys. 53(1), 97–99 (2010)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Joshi A., Xiao M.: Cavity-QED-based unconventional geometric phase gates with bichromatic field modes. Phys. Lett. A. 359, 390–395 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Kraus K.: States, Effects and Operations. Fundamental Notions of Quantum Theory. Springer, Berlin (1983)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Saint-Petersburg State University of Information Technologies, Mechanics and OpticsSaint-PetersburgRussia

Personalised recommendations