Advertisement

Quantum Information Processing

, Volume 11, Issue 6, pp 1845–1865 | Cite as

Different dynamics of classical and quantum correlations under decoherence

  • Peng Huang
  • Jun Zhu
  • Xiao-xiao Qi
  • Guang-qiang He
  • Gui-hua Zeng
Article

Abstract

The dynamics of classical and quantum correlations under nondissipative and dissipative decoherences are analytically and numerically investigated with both one-side measures and two-side measures. Specifically, two qubits under local amplitude damping decoherence and depolarizing decoherence channels are considered. We show that, under the action of amplitude damping decoherence, both the entanglement and correlations of the different types of initial states with same initial values, suffer different types of dynamics. Moreover, the transfers of the entanglement and correlations between the system and the environment for different types of initial states are also shown to be different. While for the action of depolarizing decoherence, there does not exist sudden change in the decay rates of both the classical and quantum correlations, which is different from some other nondissipative channels. Furthermore, the quantum dissonance can be found to keep unchanged under the action of depolarizing decoherence. Such different dynamic behaviors of different noisy quantum decoherence channels reveal distinct transmission performance of classical and quantum information.

Keywords

Quantum information Classical correlation Quantum correlation Decoherence channel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47(10), 777–780 (1935)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Yu T., Eberly J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97(14), 140403 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Xu J.S., Li C.F., Gong M., Zou X.B., Shi C.H. et al.: Experimental demonstration of photonic entanglement collapse and revival. Phys. Rev. Lett. 104(10), 100502 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Meyer D.A.: Sophisticated quantum search without entanglement. Phy. Rev. Lett. 85(9), 2014–2017 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Kenigsberg D., Mor T., Ratsaby G.: Quantum advantage without entanglement. Quantum Inf. Comput. 6(7), 606–615 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Datta A., Shaji A., Caves C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100(5), 050502 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Lanyon B.P., Barbieri M., Almeida M.P., White A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101(20), 200501 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Henderson L., Vedral V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34(35), 6899–6905 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ollivier H., Zurek W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4281 (1989)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Ollivier H., Zurek W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Oppenheim J., Horodecki M., Horodecki P., Horodecki R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89(18), 180402 (2002)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Terhal B.M., Horodecki M., Leung D.W., DiVincenzo D.P.: The entanglement of purification. J. Math. Phys. 43(9), 4286–4298 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    DiVincenzo D.P., Horodecki M., Leung D.W., Smolin J.A., Terhal B.M.: Locking classical correlations in quantum states. Phys. Rev. Lett. 92(6), 067902 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Horodecki M., Horodecki P., Horodecki R., Oppenheim J. et al.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71(6), 062307 (2005)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Groisman B., Popescu S., Winter A.: Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72(3), 032317 (2005)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Luo S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77(2), 022301 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Modi K., Paterek T., Son W., Vedral V., Williamson M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104(8), 080501 (2010)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Zurek W.H.: Quantum discord and Maxwells demons. Phys. Rev. A 67(1), 012320 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Rodriguez-Rosario C.A., Modi K., Kuah A.M., Shaji A., Sudarshan E.C.G.: Completely positive maps and classical correlations. J. Phys. A Math. Theor. 41(20), 205301 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Piani M., Horodecki P., Horodecki R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100(9), 090502 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Luo S.: Quantum discord for two-qubit systems. Phys. Rev. A 77(4), 042303 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Werlang T., Souza S., Fanchini F.F., Boas C.J.V.: Robustness of quantum discord to sudden death. Phys. Rev. A 80(2), 024103 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Ferraro A., Aolita L., Cavalcanti D., Cucchietti F.M., Acin A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81(5), 052318 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Wang B., Xu Z.Y., Chen Z.Q., Feng M.: Non-Markovian effect on the quantum discord. Phys. Rev. A 81(1), 014101 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Fanchini F.F., Werlang T., Brasil C.A., Arruda L.G.E., Caldeira A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81(5), 052107 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Maziero J., Céleri C.L., Serra R.M., Vedral V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80(4), 044102 (2009)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Maziero J., Werlang T., Fanchini F.F., Céleri C.L., Serra R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81(2), 022116 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Sarandy M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80(2), 022108 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Luo S., Zhang Q.: Observable Correlations in two-qubit states. J. Stat. Phys. 136(1), 165–177 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Xu J.S., Xu X.Y., Li C.F., Zhang C.J. et al.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)Google Scholar
  33. 33.
    Berrada K., Eleuch H., Hassouni Y.: Asymptotic dynamics of quantum discord in open quantum systems. J. Phys. B At. Mol. Opt. Phys. 44(14), 145503 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Schumacher B., Westmoreland M.D.: Quantum mutual information and the one-time pad. Phys. Rev. A 74(4), 042305 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Vedral, V.: The elusive source of quantum effectiveness. http://arxiv.org/abs/0906.3656 (2009)
  36. 36.
    Mazzola L., Piilo J., Maniscalco S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104(20), 200401 (2010)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Cover T.M., Thomas J.A.: Elements of Information Theory. Wiley, New York (2006)zbMATHGoogle Scholar
  38. 38.
    Vedral V., Plenio M.B., Rippin M.A., Knight P.L.: Quantifying entanglement. Phys. Rev. Lett. 78(12), 2275–2279 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Vedral V., Plenio M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57(3), 1619–1633 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    Kraus K.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin (1983)CrossRefzbMATHGoogle Scholar
  41. 41.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK (2000)zbMATHGoogle Scholar
  42. 42.
    Wang Q., Tan M.Y., Liu Y., Zeng H.S.: Entanglement distribution via noisy quantum channels. J. Phys. B At. Mol. Opt. Phys. 42(12), 125503 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245–2248 (1998)ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    López C.E., Romero G., Lastra F. et al.: Sudden birth versus sudden death of entanglement in multipartite systems. Phys. Rev. Lett. 101(8), 080503 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Peng Huang
    • 1
  • Jun Zhu
    • 1
  • Xiao-xiao Qi
    • 1
  • Guang-qiang He
    • 1
  • Gui-hua Zeng
    • 1
  1. 1.Department of Electronic Engineering, State Key Laboratory of Advanced Optical Communication Systems and NetworksShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations