Advertisement

Quantum Information Processing

, Volume 11, Issue 6, pp 1603–1617 | Cite as

Entanglement in dipolar coupling spin system in equilibrium state

  • Gregory B. Furman
  • Victor M. Meerovich
  • Vladimir L. Sokolovsky
Article

Abstract

We study the appearance of the entangled states in a one-dimensional finite chain of dipolar-coupling nuclear spins of 1/2 in the conditions of thermodynamic equilibrium. It is shown that entanglement is achieved by the application of a low external magnetic field in which the Zeeman interaction energy is the order of or even less than the dipolar interaction one. When these energies are equal, the critical temperature, i. e. the temperature of the entanglement appearance, coincides with the temperature at which the heat capacity of the spin chain achieves its maximum. The obtained relationship between the critical temperature and the magnetic field can be considered as an entanglement witness. The dependences of the heat capacity on temperature and magnetic field have different character for entangled and separable states and can be served for experimental detection of entangled states.

Keywords

Entanglement Spin dynamics Dipolar coupling Heat capacity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Benenti G., Casati G., Strini G.: Principles of Quantum Computation and Information, vols. I and II. World Scientific, Singapore (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Amico L., Fazio R., Osterloh A., Vedral V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 885 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bennett C.H., DiVincenzo D.P.: Quantum information and computation. Nature 404, 247 (2000)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Roos C.F., Kim K., Riebe M., Blatt R.: ‘Designer atoms’ for quantum metrology. Nature 443, 316 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Cappellaro P., Emerson J., Boulant N., Ramanathan C., Lloyd S., Cory D.G.: Entanglement assisted metrology. Phys. Rev. Lett. 94, 020502 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    Popescu S., Rohrlich D.: Thermodynamics and the measure of entanglement. Phys. Rev. A 56, R3319 (1997)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Mintert F., Carvalho A.R.R., Kus M., Buchleitner A.: Measures and dynamics of entangled states. Phys. Rep. 415, 207 (2005)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Landau L.D., Lifshits E.M.: Statistical Physics. Butterworth-Heinemann, Oxford (1999)zbMATHGoogle Scholar
  14. 14.
    Brout R.: Phase Transition. University of Brussels, New York (1968)Google Scholar
  15. 15.
    Abragam A., Goldman M.: Nuclear Magnetism: Order and Disorder. Clarendon Press, Oxford (1982)Google Scholar
  16. 16.
    Furman G.B., Meerovich V.M., Sokolovsky V.L.: Entanglement and multiple quantum coherence dynamics in spin clusters. Quantum Inf. Process. 8, 379–386 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tóth G., Gühne O.: Entanglement detection in the stabilizer formalism. Phys. Rev. A 72, 022340 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Vedral V., Kashefi E.: Uniqueness of entanglement measure and thermodynamics. Phys. Rev. Lett. 89, 037903 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Brandao F.G.S.L., Plenio M.B.: Entanglement theory and the second law. Nat. Phys. 4, 873 (2008)CrossRefGoogle Scholar
  20. 20.
    Barankov R., Polkovnikov A.: Microscopic diagonal entropy and its connection to basic thermodynamic relations. Ann. Phys. 326, 486 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ghosh S., Rosenbaum T.F., Aeppli G., Coppersmith S.: Entangled quantum state of magnetic dipoles. Nature 425, 48 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Dowling M.R., Doherty A.C., Bartlett S.D.: Energy as an entanglement witness for quantum many-body systems. Phys. Rev. A 70, 062113 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Toth G.: Entanglement witnesses in spin models. Phys. Rev. A 71, 010301(R) (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gong S.-S., Su G.: Thermal entanglement in one-dimensional Heisenberg quantum spin chains under magnetic fields. Phys. Rev. A 80, 012323 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Anders J., Kaszlikowski D., Lunkes C., Ohshima T., Vedral V.: Detecting entanglement with a thermometer. New J. Phys. 8, 140 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Brukner, C., Vedral, V.: Macroscopic thermodynamical witnesses of quantum entanglement. http://arxiv.org/abs/quant-ph/0406040v1
  27. 27.
    Furman G.B., Meerovich V.M., Sokolovsky V.L.: Nuclear polarization and entanglement in spin systems. Quantum Inf. Process. 8, 283 (2009)CrossRefzbMATHGoogle Scholar
  28. 28.
    Wiesniak M., Vedral V., Brukner C.: Magnetic susceptibility as a macroscopic entanglement witness. New J. Phys. 7, 258 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Brukner C., Vedral V., Zeilinger A.: Crucial role of quantum entanglement in bulk properties of solids. Phys. Rev. A 73, 012110 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Wiesniak M., Vedral V., Brukner C.: Heat capacity as an indicator of entanglement. Phys. Rev. B 78, 064108 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Doronin S.I.: Multiple quantum spin dynamics of entanglement. Phys. Rev. A 68, 052306 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Fel’dman E.B., Pyrkov A.N.: Evolution of spin entanglement and an entanglement witness in multiple-quantum NMR experiments. Pis’ma Zh. Eksp. Teor. Fiz. 88, 454 (2008)Google Scholar
  33. 33.
    Furman G.B., Meerovich V.M., Sokolovsky V.L.: Dynamics of entanglement in a one-dimensional Ising chain. Phys.Rev. A 78, 042301 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Brukner, C., Vedral, V.: Macroscopic thermodynamical witnesses of quantum entanglement. arXiv: 0406040 (quant-ph) (2004)Google Scholar
  35. 35.
    Wang X.: Effects of anisotropy on thermal entanglement. Phys. Lett. A 281, 101 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Wang X.: Thermal and ground-state entanglement in Heisenberg XX qubit rings. Phys. Rev. A 66, 034302 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Asoudeh M., Karimipour V.: Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71, 022308 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Zhang G.-F., Li S.-S.: Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field. Phys. Rev. A 72, 034302 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Asoudeh M., Karimipour V.: Thermal entanglement of spins in mean-field clusters. Phys. Rev. A 73, 062109 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Rossignoli R., Schmiegelow C.T.: Entanglement generation resonances in XY chains. Phys. Rev. A 75, 012320 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Abdalla M.S., Lashin E., Sadiek G.: Entropy and variance squeezing for time-dependent two-coupled atoms in an external magnetic field. J. Phys. B 41, 015502 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Sadiek G., Lashin E., Abdalla M.S.: Entanglement of a two-qubit system with anisotropic XYZ exchange coupling in a nonuniform time-dependent external magnetic field. Physica B 404, 1719 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Wichterich H., Bose S.: Exploiting quench dynamics in spin chains for distant entanglement and quantum communication. Phys. Rev. A 79, 060302(R) (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Sadiek G., Alkurtass B., Aldossary O.: Entanglement in a time-dependent coupled XY spin chain in an external magnetic field. Phys. Rev. A 82, 052337 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Doronin S.I., Pyrkov A.N., Fel’dman E.B.: Entanglement in alternating open chains of nuclear spins s = 1/2 with the XY Hamiltonian. JETP Lett. 85, 519 (2007)CrossRefGoogle Scholar
  46. 46.
    Doronin S.I., Fel’dman E.B., Kucherov M.M., Pyrkov A.N.: Entanglement of systems of dipolar coupled nuclear spins at the adiabatic demagnetization. J. Phys. Condens. Matter 21, 025601 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    Furman G.B., Meerovich V.M., Sokolovsky V.L.: Entanglement of dipolar coupling spins. Quantum Inf. Process. 10, 307 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gregory B. Furman
    • 1
  • Victor M. Meerovich
    • 1
  • Vladimir L. Sokolovsky
    • 1
  1. 1.Physics DepartmentBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations