Advertisement

Quantum Information Processing

, Volume 11, Issue 6, pp 1431–1463 | Cite as

The quantum dynamic capacity formula of a quantum channel

  • Mark M. Wilde
  • Min-Hsiu Hsieh
Article

Abstract

The dynamic capacity theorem characterizes the reliable communication rates of a quantum channel when combined with the noiseless resources of classical communication, quantum communication, and entanglement. In prior work, we proved the converse part of this theorem by making contact with many previous results in the quantum Shannon theory literature. In this work, we prove the theorem with an “ab initio” approach, using only the most basic tools in the quantum information theorist’s toolkit: the Alicki-Fannes’ inequality, the chain rule for quantum mutual information, elementary properties of quantum entropy, and the quantum data processing inequality. The result is a simplified proof of the theorem that should be more accessible to those unfamiliar with the quantum Shannon theory literature. We also demonstrate that the “quantum dynamic capacity formula” characterizes the Pareto optimal trade-off surface for the full dynamic capacity region. Additivity of this formula reduces the computation of the trade-off surface to a tractable, textbook problem in Pareto trade-off analysis, and we prove that its additivity holds for the quantum Hadamard channels and the quantum erasure channel. We then determine exact expressions for and plot the dynamic capacity region of the quantum dephasing channel, an example from the Hadamard class, and the quantum erasure channel.

Keywords

Quantum communication Quantum Shannon theory Quantum dynamic capacity formula Convex optimization Quantum dynamic capacity region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alicki R., Fannes M.: Continuity of quantum conditional information. J. Phys. A Math. Gen. 37(5), L55–L57 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barnum H., Knill E., Nielsen M.A.: On quantum fidelities and channel capacities. IEEE Trans. Inf. Theory 46, 1317–1329 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bennett C.H., DiVincenzo D.P., Smolin J.A.: Capacities of quantum erasure channels. Phys. Rev. Lett. 78(16), 3217–3220 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48, 2637 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Brádler K.: An infinite sequence of additive channels: the classical capacity of cloning channels. IEEE Trans. Inf. Theory 57(8), 5497–5503 (2011) arXiv:0903.1638MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brádler K., Hayden P., Touchette D., Wilde M.M.: Trade-off capacities of the quantum Hadamard channels. Phys. Rev. A 81, 062312 (2010) arXiv:1001.1732ADSCrossRefGoogle Scholar
  10. 10.
    Devetak I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51(1), 44–55 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Devetak I., Harrow A.W., Winter A.: A resource framework for quantum Shannon theory. IEEE Trans. Inf. Theory 54(10), 4587–4618 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Devetak I., Shor P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256(2), 287–303 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Grassl M., Beth Th., Pellizzari T.: Codes for the quantum erasure channel. Phys. Rev. A 56(1), 33–38 (1997)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Holevo A.S.: The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory 44, 269–273 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hsieh, M.-H., Wilde, M.M.: Theory of Quantum Computation, Communication, and Cryptography, Lecture Notes in Computer Science, vol. 5906, chapter Optimal Trading of Classical Communication, Quantum Communication, and Entanglement, pp. 85–93. Springer, May 2009Google Scholar
  16. 16.
    Hsieh M.-H., Wilde M.M.: Entanglement-assisted communication of classical and quantum information. IEEE Trans. Inf. Theory 56(9), 4682–4704 (2010) arXiv:0811.4227MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hsieh M.-H., Wilde M.M.: Trading classical communication, quantum communication, and entanglement in quantum Shannon theory. IEEE Trans. Inf. Theory 56(9), 4705–4730 (2010) arXiv:0901.3038MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    King C., Matsumoto K., Nathanson M., Ruskai M.B.: Properties of conjugate channels with applications to additivity and multiplicativity. Markov Processes and Related Fields 13(2), 391–423 (2007) J. T. Lewis memorial issueMathSciNetzbMATHGoogle Scholar
  19. 19.
    Leung D., Smith G.: Continuity of quantum channel capacities. Commun. Math. Phys. 292(1), 201–215 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lieb E.H., Ruskai M.B.: Proof of strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938 (1973)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Lloyd S.: The capacity of a noisy quantum channel. Phys. Rev. A 55, 1613–1622 (1997)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)zbMATHGoogle Scholar
  23. 23.
    Schumacher B., Nielsen M.A.: Quantum data processing and error correction. Phys. Rev. A 54, 2629–2635 (1996)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Schumacher B., Westmoreland M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131–138 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Shor P.W.: The Quantum Channel Capacity and Coherent Information. MSRI Workshop on Quantum Computation, Berkeley (2002)Google Scholar
  26. 26.
    Smith G., Yard J.: Quantum communication with zero-capacity channels. Science 321, 1812–1815 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yard, J.: Simultaneous classical-quantum capacities of quantum multiple access channels. PhD thesis, Stanford University, Stanford (2005). quant-ph/0506050Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada
  2. 2.ERATO-SORST Quantum Computation and Information Project, Japan Science and Technology AgencyTokyoJapan
  3. 3.Statistical LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations