Quantum Information Processing

, 10:1037 | Cite as

Controlling quantum information processing in hybrid systems on chips

  • Guy Bensky
  • Robert Amsüss
  • Johannes Majer
  • David Petrosyan
  • Jörg SchmiedmayerEmail author
  • Gershon Kurizki
Open Access


We investigate quantum information processing, transfer and storage in hybrid systems comprised of diverse blocks integrated on chips. Strong coupling between superconducting (SC) qubits and ensembles of ultracold atoms or NV-center spins is mediated by a microwave transmission-line resonator that interacts near-resonantly with the atoms or spins. Such hybrid devices allow us to benefit from the advantages of each block and compensate for their disadvantages. Specifically, the SC qubits can rapidly implement quantum logic gates, but are “noisy” (prone to decoherence), while collective states of the atomic or spin ensemble are “quiet”(protected from decoherence) and thus can be employed for storage of quantum information. To improve the overall performance (fidelity) of such devices we discuss dynamical control to optimize quantum state-transfer from a “noisy” qubit to the “quiet” storage ensemble. We propose to maximize the fidelity of transfer and storage in a spectrally inhomogeneous spin ensemble, by pre-selecting the optimal spectral portion of the ensemble. Significant improvements of the overall fidelity of hybrid devices are expected under realistic conditions. Experimental progress towards the realization of these schemes is discussed.


Quantum information Hybrid quantum systems Atom chip 



This research was supported by the EUthrough MIDAS, by DIP, the Humboldt-Meitner Award (G.K.), the Humboldt Foundation (D.P.) and the Wittgenstein Prize (J.S.)

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Andre A. et al.: Polar molecules near superconducting resonators: a coherent, all-electrical atom-mesocopic interface. Nat. Phys. 2, 636 (2006)CrossRefGoogle Scholar
  2. 2.
    Rabl P. et al.: Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97(3), 033003 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Tordrup Karl, Mølmer Klaus: Quantum computing with a single molecular ensemble and a cooper-pair box. Phys. Rev. A 77(2), 020301 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Schoelkopf R.J., Girvin S.M.: Wiring up quantum systems. Nature 451, 664 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Petrosyan D., Fleischhauer M.: Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators. Phys. Rev. Lett. 100, 170501 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Petrosyan D. et al.: Reversible state transfer between superconducting qubits and atomic ensembles. Phys. Rev. A 79(4), 040304(R) (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Wallquist M. et al.: Hybrid quantum devices and quantum engineering. Phys. Scr. t137, 014001 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Imamoglu A.: Cavity qed based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102(8), 083602 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Verdú J. et al.: Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. Phys. Rev. Lett. 103(4), 043603 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Devoret M.H., Martinis J.M.: Implementing qubits with superconducting integrated circuits. Quantum Inf. Process. 3, 163–203 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    You J.Q., Nori F.: Superconducting circuits and quantum information. Phys. Today 58(11), 42–47 (2005)CrossRefGoogle Scholar
  12. 12.
    Makhlin Y., Schön G., Shnirman A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73(2), 357–400 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    You J.Q., Nori F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Duan L.-M., Monroe C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82(2), 1209–1224 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Taylor J.M., Marcus C.M., Lukin M.D.: Long-lived memory for mesoscopic quantum bits. Phys. Rev. Lett. 90(20), 206803 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Fleischhauer M., Lukin M.D.: Quantum memory for photons: dark-state polaritons. Phys. Rev. A 65(2), 022314 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Lukin M.D.: Colloquium: trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75(2), 457–472 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Zhao B. et al.: A millisecond quantum memory for scalable quantum networks. Nat. Phys. 5, 95 (2009)CrossRefGoogle Scholar
  19. 19.
    Dudin Y.O., Zhao R., Kennedy T.A.B., Kuzmich A.: Light storage in a magnetically dressed optical lattice. Phys. Rev. A 81(4), 041805 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Deutsch C. et al.: Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105(2), 020401 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Gurudev Dutt M.V. et al.: Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316(5829), 1312–1316 (2007)CrossRefGoogle Scholar
  22. 22.
    Taylor J.M. et al.: High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008)CrossRefGoogle Scholar
  23. 23.
    Acosta V.M. et al.: Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys. Rev. B 80(11), 115202 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Stanwix P.L. et al.: Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Phys. Rev. B 82(20), 201201 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Blais A. et al.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69(6), 062320 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Gallagher T.F.: Rydberg Atoms. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  27. 27.
    Brune M., Raimond J.-M., Haroche S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Henschel K., Majer J., Schmiedmayer J., Ritsch H.: Cavity qed with an ultracold ensemble on a chip: prospects for strong magnetic coupling at finite temperatures. Phys. Rev. A 82(3), 033810 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Nirrengarten T. et al.: Realization of a superconducting atom chip. Phys. Rev. Lett. 97(20), 200405 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Mukai T. et al.: Persistent supercurrent atom chip. Phys. Rev. Lett. 98(26), 260407 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Roux C. et al.: Bose-Einstein condensation on a superconducting atom chip. Europhys. Lett. 81, 56004 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Kasch B. et al.: Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit. New J. Phys. 12, 065024 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Hufnagel Ch., Mukai T., Shimizu F.: Stability of a superconductive atom chip with presistent current. Phys. Rev. A 79, 053641 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Emmert A. et al.: Measurement of the trapping lifetime close to a cold metallic surface on a cryogenic atom–chip. Eur. Phys. J. D 51, 173 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Meek S.A., Conrad H., Meijer G.: Trapping molecules on a chip. Science 324, 1699–1702 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Schuster D.I. et al.: High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys. Rev. Lett. 105(14), 140501 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Kubo Y. et al.: Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105(14), 140502 (2010)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Amsüss R. et al.: Cavity qed with magnetically coupled collective spin states. Phys. Rev. Lett. 107(6), 060502 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Wu H. et al.: Storage of multiple coherent microwave excitations in an electron spin ensemble. Phys. Rev. Lett. 105(14), 140503 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Bushev P. et al.: Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator. Phys. Rev. B 84(6), 060501 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Reichel, J., Vuletic, V. (eds): Atom Chips. Wiley, VCH (2011)Google Scholar
  42. 42.
    Roos I., Mølmer K.: Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping. Phys. Rev. A 69(2), 022321 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    Tordrup K., Mølmer K.: Quantum-state reconstruction with imperfect rotations on an inhomogeneously broadened ensemble of qubits. Phys. Rev. A 75(4), 042318 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Wesenberg J.H., Kurucz Z., Mølmer K.: Dynamics of the collective modes of an inhomogeneous spin ensemble in a cavity. Phys. Rev. A 83(2), 023826 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Hahn E.L.: Spin echoes. Phys. Rev. 80(8), 580–594 (1950)ADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Nilsson M., Kröll S.: Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles. Opt. Commun. 247(4–6), 393–403 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    Alexander A.L., Longdell J.J., Sellars M.J., Manson N.B.: Photon echoes produced by switching electric fields. Phys. Rev. Lett. 96(4), 043602 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Wallraff A. et al.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    Majer J. et al.: Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    Sillanpaa M.A., Park J.I., Simmonds R.W.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    Brennecke F. et al.: Cavity qed with a Bose-Einstein condensate. Nature 450, 268–271 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    Mariantoni M. et al.: Photon shell game in three-resonator circuit quantum electrodynamics. Nat. Phys. 7, 287 (2011)CrossRefGoogle Scholar
  53. 53.
    Houck A.A. et al.: Controlling the spontaneous emission of a superconducting transmon qubit. Phys. Rev. Lett. 101, 080502 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    Clausen J., Bensky G., Kurizki G.: Bath-optimized minimal-energy protection of quantum operations from decoherence. Phys. Rev. Lett. 104(4), 040401 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    Gordon G., Kurizki G., Lidar D.A.: Optimal dynamical decoherence control of a qubit. Phys. Rev. Lett. 101(1), 010403 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    Wu L.A., Kurizki G., Brumer P.: Master equation and control of an open quantum system with leakage. Phys. Rev. Lett. 102, 080405 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    Wu L.-A., Byrd M.S., Lidar D.A.: Polynomial-time simulation of pairing models on a quantum computer. Phys. Rev. Lett. 89, 057904 (2002)MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    Byrd M.S., Wu L-A., Lidar D.A.: Overview of quantum error prevention and leakage elimination. J. Mod. Opt. 51, 2449 (2004)ADSzbMATHCrossRefGoogle Scholar
  59. 59.
    Byrd M.S., Lidar D.A., Wu L-A., Zanardi P.: Universal leakage elimination. Phys. Rev. A 71, 052301 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    Lidar D.A.: Towards fault tolerant adiabatic quantum computation. Phys. Rev. Lett. 100, 160506 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    Kofman A.G., Kurizki G.: Unified theory of dynamically suppressed qubit decoherence in thermal baths. Phys. Rev. Lett. 93(13), 130406 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    Kofman A.G., Kurizki G.: Universal dynamical control of quantum mechanical decay: Modulation of the coupling to the continuum. Phys. Rev. Lett. 87, 270405 (2001)CrossRefGoogle Scholar
  63. 63.
    Kofman A.G., Kurizki G.: Acceleration of quantum decay processes by frequent observations. Nature (London) 405, 546 (2000)ADSCrossRefGoogle Scholar
  64. 64.
    Gordon G., Erez N., Kurizki G.: Universal dynamical decoherence control of noisy single- and multi-qubit systems. J. Phys. B 40(9), S75 (2007)MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    Gordon G., Kurizki G.: Universal dephasing control during quantum computation. Phys. Rev. A 76(4), 042310 (2007)ADSCrossRefGoogle Scholar
  66. 66.
    Breuer H.P., Petruccione F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  67. 67.
    Viola L., Knill E., Lloyd S.: Dynamical generation of noiseless quantum subsystems. Phys. Rev. Lett. 85(16), 3520–3523 (2000)ADSCrossRefGoogle Scholar
  68. 68.
    Viola L., Knill E., Lloyd S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82(12), 2417–2421 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  69. 69.
    Viola L., Lloyd S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58(4), 2733–2744 (1998)MathSciNetADSCrossRefGoogle Scholar
  70. 70.
    Vitali D., Tombesi P.: Heating and decoherence suppression using decoupling techniques. Phys. Rev. A 65(1), 012305 (2001)ADSCrossRefGoogle Scholar
  71. 71.
    Uhrig G.S.: Keeping a quantum bit alive by optimized π-pulse sequences. Phys. Rev. Lett. 98(10), 100504 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    Kofman A.G., Kurizki G.: Quantum Zeno effect on atomic excitation decay in resonators. Phys. Rev. A 54(5), R3750–R3753 (1996)ADSCrossRefGoogle Scholar
  73. 73.
    Abragam A.: The Principles of Nuclear Magnetism. Oxford University Press, Oxford, England (1961)Google Scholar
  74. 74.
    Allen L., Eberly J.H.: Optical Resonance and Two-Level Atoms. Wiley, New York (1975)Google Scholar
  75. 75.
    Folman R. et al.: Controlling cold atoms using nanofabricated surfaces: atom chips. Phys. Rev. Lett. 84, 4749 (2000)ADSCrossRefGoogle Scholar
  76. 76.
    Folman R. et al.: Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002)Google Scholar
  77. 77.
    Fortagh J., Zimmermann C.: Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235 (2007)ADSCrossRefGoogle Scholar
  78. 78.
    Lin Y., Teper I., Chin C., Vuletić V.: Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces. Phys. Rev. Lett. 92, 50404 (2004)ADSCrossRefGoogle Scholar
  79. 79.
    Aigner S. et al.: Long-range order in electronic transport through disordered metal films. Science 319, 1226–1229 (2008)ADSCrossRefGoogle Scholar
  80. 80.
    Haslinger S. et al.: Electron beam driven alkali metal atom source for loading a magneto-optical trap in a cryogenic environment. Appl. Phys. B 102, 819 (2011)ADSCrossRefGoogle Scholar
  81. 81.
    Haslinger, S.: Cold atoms in a cryogenic environment. PhD thesis, TU-Wien (2011)Google Scholar
  82. 82.
    Lukin M.D. et al.: Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87(3), 037901 (2001)ADSCrossRefGoogle Scholar
  83. 83.
    Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  84. 84.
    Lambropoulos P., Petrosyan D.: Fundamentals of Quantum Optics and Quantum Information. Springer, Berlin (2006)Google Scholar
  85. 85.
    Bensky G. et al.: Universal dynamical decoupling from slow noise with minimal control. Europhys. lett. 89(1), 10011 (2010)ADSCrossRefGoogle Scholar
  86. 86.
    Zhang P., Wang Y.D., Sun C.P.: Cooling mechanism for a nanomechanical resonator by periodic coupling to a cooper pair box. Phys. Rev. Lett. 95(9), 097204 (2005)ADSCrossRefGoogle Scholar
  87. 87.
    Erez N., Gordon G., Nest M., Kurizki G.: Thermodynamic control by frequent quantum measurements. Nature 452, 724–727 (2008)ADSCrossRefGoogle Scholar
  88. 88.
    Gordon G. et al.: Cooling down quantum bits on ultrashort time scales. New J. Phys. 11(12), 123025 (2009)ADSCrossRefGoogle Scholar
  89. 89.
    Álvarez Gonzalo, A., Bhaktavatsala Rao A., Bhaktavatsala Rao D.D., Frydman L., Kurizki G.: Zeno and anti-Zeno polarization control of spin ensembles by induced dephasing. Phys. Rev. Lett. 105(16), 160401 (2010)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Guy Bensky
    • 1
  • Robert Amsüss
    • 2
  • Johannes Majer
    • 2
  • David Petrosyan
    • 3
  • Jörg Schmiedmayer
    • 2
    Email author
  • Gershon Kurizki
    • 1
  1. 1.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Vienna Center for Quantum Science and Technology (VCQ)Atominstitut, TU-WienViennaAustria
  3. 3.Institute of Electronic Structure and Laser, FORTHHeraklion, CreteGreece

Personalised recommendations