Advertisement

Quantum information processing in self-assembled crystals of cold polar molecules

  • M. Ortner
  • Y. L. Zhou
  • P. RablEmail author
  • P. Zoller
Article

Abstract

We discuss the implementation of quantum gate operations in a self-assembled dipolar crystal of polar molecules. Here qubits are encoded in long-lived spin states of the molecular ground state and stabilized against collisions by repulsive dipole–dipole interactions. To overcome the single site addressability problem in this high density crystalline phase, we describe a new approach for implementing controlled single and two-qubit operations based on resonantly enhanced spin–spin interactions mediated by a localized phonon mode. This local mode is created at a specified lattice position with the help of an additional marker molecule such that individual qubits can be manipulated by using otherwise global static and microwave fields only. We present a general strategy for generating state and time dependent dipole moments to implement a universal set of gate operations for molecular qubits and we analyze the resulting gate fidelities under realistic conditions. Our analysis demonstrates the experimental feasibility of this approach for scalable quantum computing or digital quantum simulation schemes with polar molecules.

Keywords

Quantum information processing Cold polar molecules Self-assembled crystals of polar molecules Molecular dipolar crystals Enhanced phonon mediated interaction Marker qubits Local phonon modes Molecular spin qubits 

References

  1. 1.
    Blatt R., Wineland D.J.: Entangled states of trapped atomic ions. Nature 453, 1008 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Bloch I.: Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature 453, 1016 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Saffman M., Walker T.G., Mølmer K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Carr L.D., DeMille D., Krems R.V., Ye J.: Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    DiVincenzo D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771 (2000)zbMATHCrossRefGoogle Scholar
  6. 6.
    Schmidt-Kaler F., Häffner H., Riebe M., Gulde S., Lancaster G.P.T., Deuschle T., Becher C., Roos C.F., Eschner J., Blatt R.: Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Barreiro J.T., Müller M., Schindler P., Nigg D., Monz T., Chwalla M., Hennrich M., Roos C.F., Zoller P., Blatt R.: An open-system quantum simulator with trapped ions. Nature 470, 486 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Weitenberg C., Endres M., Sherson J.F., Cheneau M., Schau P., Fukuhara T., Bloch I., Kuhr S.: Single-spin addressing in an atomic Mott insulator. Nature 471, 319 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Mandel O., Greiner M., Widera A., Rom T., Hänsch T.W., Bloch I.: Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Isenhower L., Urban E., Zhang X.L., Gill A.T., Henage T., Johnson T.A., Walker T.G., Saffman M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Shuman E.S., Barry J.F., DeMille D.: Laser cooling of a diatomic molecule. Nature 467, 820 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Weinstein J.D., deCarvalho R., Guillet T., Friedrich B., Doyle J.M.: Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature 359, 148 (1998)ADSGoogle Scholar
  13. 13.
    Sofikitis D., Fioretti A., Weber S., Viteau M., Chotia A., Horchani R., Allegrini M., Chatel B., Comparat D., Pillet P.: Broadband vibrational cooling of cold cesium molecules: theory and experiments. Chin. J. Chem. Phys. 22, 149 (2009)CrossRefGoogle Scholar
  14. 14.
    Deiglmayr J., Grochola A., Repp M., Mörtlbauer K., Glück C., Lange J., Dulieu O., Wester R., Weidemüller M.: Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133004 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Bethlem H.L., Berden G., Meijer G.: Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83, 1558 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Zeppenfeld M., Motsch M., Pinkse P.W.H., Rempe G.: Optoelectrical cooling of polar molecules. Phys. Rev. A 80, 041401(R) (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Stwalley W.C.: Efficient conversion of ultracold Feshbach-resonance-related polar molecules into ultracold ground state (X  1 Σ+   v =  0, J =  0) molecules. Eur. Phys. J. D 31, 221 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Ni K.K., Ospelkaus S., de Miranda M.H.G., Pe’er A., Neyenhuis B., Zirbel J.J., Kotochigova S., Julienne P.S., Jin D.S., Ye J.: A high phase-space-density gas of polar molecules. Science 322, 231 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Aikawa K., Akamatsu D., Kobayashi J., Ueda M., Kishimoto T., Inouye S.: Toward the production of quantum degenerate bosonic polar molecules. New J. Phys. 11, 055035 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Kerman A., Sage J.M., Sainis S., Bergman T., DeMille D.: Production of ultracold, polar RbCs* molecules via photoassociation. Phys. Rev. Lett. 92, 033004 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Lang F., Winkler K., Strauss C., Grimm R., Denschlag J.H.: Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133005 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    DeMille D.: Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Yelin S.F., Kirby K., Côté R.: Schemes for robust quantum computation with polar molecules. Phys. Rev. A 74, 050301(R) (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Jaksch D., Cirac J.I., Zoller P., Rolston S.L., Côté R., Lukin M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Kutznetsova E., Gacesa M., Yelin S., Côté R.: Phase gate and readout with an atom-molecule hybrid platform. Phys. Rev. A 81, 030301(R) (2010)ADSGoogle Scholar
  26. 26.
    Lee C., Ostrovskaya E.A.: Quantum computation with diatomic bits in optical lattices. Phys. Rev. A 72, 062321 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Andre A., DeMille D., Doyle J.M., Lukin M.D., Maxwell S.E., Rabl P., Schoelkopf R.J., Zoller P.: A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nat. Phys. 2, 636 (2006)CrossRefGoogle Scholar
  28. 28.
    Rabl P., DeMille D., Doyle J., Lukin M.D., Schoelkopf R.J., Zoller P.: Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97, 033003 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Tordrup K., Mølmer K.: Quantum computing with a single molecular ensemble and a Cooper-pair box. Phys. Rev. A 77, 020301(R) (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Rabl P., Zoller P.: Molecular dipolar crystals as high-fidelity quantum memory for hybrid quantum computing. Phys. Rev. A 76, 042308 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Büchler H.P., Demler E., Lukin M., Micheli A., Prokofev N., Pupillo G., Zoller P.: Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007)CrossRefGoogle Scholar
  32. 32.
    Astrakharchik G.E., Boronat J., Kurbakov I.L., Lozovik Y.E.: Quantum phase transition in a two-dimensional system of dipoles. Phys. Rev. Lett. 98, 060405 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Citro R., Orignac E., DePalo S., Chiofalo M.L.: Evidence of Luttinger-liquid behavior in one-dimensional dipolar quantum gases. Phys. Rev. A 75, 051602(R) (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Rajapakse R.M., Bragdon T., Rey A.M., Calarco T., Yelin S.F.: Single-photon nonlinearities using arrays of cold polar molecules. Phys. Rev. A 80, 013810 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Kim K., Chang M.-S., Korenblit S., Islam R., Edwards E.E., Freericks J.K., Lin G.-D., Duan L.-M., Monroe C.: Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Mølmer K., Sørensen A.: Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835 (1998)CrossRefGoogle Scholar
  37. 37.
    García-Ripoll J.J., Zoller P., Cirac J.I.: Coherent control of trapped ions using off-resonant lasers. Phys. Rev. A 71, 062309 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Cirac J.I., Zoller P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    Porras D., Cirac J.I.: Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Calarco T., Dorner U., Julienne P.S., Williams C.J., Zoller P.: Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions. Phys. Rev. A 70, 012306 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    Cirac J.I., Zoller P.: A scalable quantum computer with ions in an array of microtraps. Nature 404, 579 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    Brown J.M., Carrington A.: Rotational Spectroscopy of Diatomic Molecules. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  43. 43.
    Micheli A., Pupillo G., Büchler H.P., Zoller P.: Cold polar molecules in two-dimensional traps: Tailoring interactions with external fields for novel quantum phases. Phys. Rev. A 76, 043604 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Mahan G.D.: Many Particle Physics. Kluwer/Plenum, NewYork (2003)Google Scholar
  45. 45.
    Alexandrov A.S.: Theory of Superconductivity. From Weak to Strong Coupling. Institute of Physics Publishing, Bristol (2003)CrossRefGoogle Scholar
  46. 46.
    Ortner M., Micheli A., Pupillo G., Zoller P.: Quantum simulations of extended Hubbard models with dipolar crystals. New J. Phys. 11, 055045 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    Lloyd S.: Universal quantum simulators. Science 273, 1073 (1996)MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of InnsbruckInnsbruckAustria
  2. 2.Institute for Quantum Optics and Quantum Information of the Austrian Academy of SciencesInnsbruckAustria
  3. 3.College of ScienceNational University of Defense TechnologyChangshaChina

Personalised recommendations