Scalable architecture for quantum information processing with atoms in optical micro-structures

  • Malte Schlosser
  • Sascha Tichelmann
  • Jens Kruse
  • Gerhard Birkl
Article

Abstract

We review recent experimental progress towards quantum information processing and quantum simulation using neutral atoms in two-dimensional (2D) arrays of optical microtraps as 2D registers of qubits. We describe a scalable quantum information architecture based on micro-fabricated optical elements, simultaneously targeting the important issues of single-site addressability and scalability. This approach provides flexible and integrable configurations for quantum state storage, manipulation, and retrieval. We present recent experimental results on the initialization and coherent one-qubit rotation of up to 100 individually addressable qubits, the coherent transport of atomic quantum states in a scalable quantum shift register, and discuss the feasibility of two-qubit gates in 2D microtrap arrays.

Keywords

Quantum information processing Quantum simulation Coherent quantum control Qubits Microoptics Atoms 

References

  1. 1.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)MATHGoogle Scholar
  2. 2.
    Bouwmeester D., Ekert A., Zeilinger A.: The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation. Springer, London (2000)MATHGoogle Scholar
  3. 3.
    Beth T., Leuchs G.: Quantum Information Processing. Wiley-VCH, Weinheim (2005)CrossRefGoogle Scholar
  4. 4.
    Everitt H.O.: Experimental Aspects of Quantum Computing. Springer, New York (2005)MATHCrossRefGoogle Scholar
  5. 5.
    Schleich W.P., Walther H.: Elements of Quantum Information. Wiley-VCH, Weinheim (2007)MATHCrossRefGoogle Scholar
  6. 6.
    Schlosser N., Reymond G., Protsenko I., Grangier P.: Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Grünzweig T., Hilliard A., McGovern M., Andersen M.F.: Near-deterministic preparation of a single atom in an optical microtrap. Nat. Phys. 6, 951 (2011)CrossRefGoogle Scholar
  8. 8.
    Beugnon J., Tuchendler C., Marion H., Gaëtan A., Miroshnychenko Y., Sortais Y.R.P., Lance A.M., Jones M.P.A., Messin G., Browaeys A., Grangier P.: Two-dimensional transport and transfer of a single atomic qubit in optical tweezers. Nat. Phys. 3, 696 (2007)CrossRefGoogle Scholar
  9. 9.
    Kuhr S., Alt W., Schrader D., Dotsenko I., Miroshnychenko Y., Rosenfeld W., Khudaverdyan M., Gomer V., Rauschenbeutel A., Meschede D.: Coherence properties and quantum state transportation in an optical conveyor belt. Phys. Rev. Lett. 91(21), 213002 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Lengwenus A., Kruse J., Schlosser M., Tichelmann S., Birkl G.: Coherent transport of atomic quantum states in a scalable shift register. Phys. Rev. Lett. 105(17), 170502 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Schrader D., Dotsenko I., Khudaverdyan M., Miroshnychenko Y., Rauschenbeutel A., Meschede D.: Neutral atom quantum register. Phys. Rev. Lett. 93(15), 150501 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Kruse J., Gierl C., Schlosser M., Birkl G.: Reconfigurable site-selective manipulation of atomic quantum systems in two-dimensional arrays of dipole traps. Phys. Rev. A 81(6), 060308 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Weitenberg C., Endres M., Sherson J.F., Cheneau M., Schauß P., Fukuhara T., Bloch I., Kuhr S.: Single-spin addressing in an atomic Mott insulator. Nature 471(7338), 319 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Mandel O., Greiner M., Widera A., Rom T., Hänsch T.W., Bloch I.: Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425(6961), 937 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Anderlini M., Lee P.J., Brown B.L., Sebby-Strabley J., Phillips W.D., Porto J.V.: Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Wilk T., Gaëtan A., Evellin C., Wolters J., Miroshnychenko Y., Grangier P., Browaeys A.: Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104(1), 010502 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Isenhower L., Urban E., Zhang X.L., Gill A.T., Henage T., Johnson T.A., Walker T.G., Saffman M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104(1), 010503 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    DiVincenzo D.P.: The physical implementation of quantum computation. Fortschritte der Physik 48, 771 (2000)ADSMATHCrossRefGoogle Scholar
  19. 19.
    Birkl G., Fortágh J.: Micro traps for quantum information processing and presicion force sensing. Laser Photon Rev. 1, 12 (2007)CrossRefGoogle Scholar
  20. 20.
    Hinds E.A., Hughes I.G.: Magnetic atom optics: mirrors, guides, traps, and chips for atoms. J. Phys. D Appl. Phys. 32(18), R119 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    Folman R., Krüger P., Schmiedmayer J., Denschlag J., Henkel C.: Microscopic atomic optics: from wires to an atomic chip. Adv. Atomic Mol. Phys. 48, 263 (2002)ADSGoogle Scholar
  22. 22.
    Fortágh J., Zimmermann C.: Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79(1), 235 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Reichel J., Vuletic V.: Atom Chips. Wiley-VCH, Weinheim (2011)CrossRefGoogle Scholar
  24. 24.
    Birkl G., Dumke R., Buchkremer F.B., Ertmer W.: Atom optics with microfabricated optical elements. Opt. Commun. 191(9), 67 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Buchkremer F., Dumke R., Volk M., Müther T., Birkl G., Ertmer W.: Quantum information processing with microfabricated optical elements. Laser Phys. 12, 736 (2002)Google Scholar
  26. 26.
    Dumke R., Volk M., Müther T., Buchkremer F.B.J., Birkl G., Ertmer W.: Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits. Phys. Rev. Lett. 89(9), 097903 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Lengwenus A., Kruse J., Volk M., Ertmer W., Birkl G.: Coherent manipulation of atomic qubits in optical micropotentials. Appl. Phys. B 86, 377 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Jahns J., Brenner K.H.: Microoptics: From Technology to Applications (Springer Series in Optical Sciences, V. 2700). Springer, New York (2004)Google Scholar
  29. 29.
    Zappe H.P.: Fundamentals of Micro-Optics. Cambridge University Press, New York (2011)Google Scholar
  30. 30.
    Herzig H.: Micro-Optics: Elements, Systems and Applications. Taylor & Francis, London (1997)Google Scholar
  31. 31.
    Dumke R., Müther T., Volk M., Ertmer W., Birkl G.: Interferometer-type structures for guided atoms. Phys. Rev. Lett. 89(22), 220402 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Kreutzmann H., Poulsen U.V., Lewenstein M., Dumke R., Ertmer W., Birkl G., Sanpera A.: Coherence properties of guided-atom interferometers. Phys. Rev. Lett. 92(16), 163201 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Lundblad N., Obrecht J.M., Spielman I.B., Porto J.V.: Field-sensitive addressing and control of field-insensitive neutral-atom qubits. Nat. Phys. 5, 575 (2009)CrossRefGoogle Scholar
  34. 34.
    Nelson K.D., Li X., Weiss D.S.: Imaging single atoms in a three-dimensional array. Nat. Phys. 3, 556 (2007)CrossRefGoogle Scholar
  35. 35.
    Bakr W.S., Gillen J.I., Peng A., Folling S., Greiner M.: A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462(7269), 74 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Yavuz D.D., Kulatunga P.B., Urban E., Johnson T.A., Proite N., Henage T., Walker T.G., Saffman M.: Fast ground state manipulation of neutral atoms in microscopic optical traps. Phys. Rev. Lett. 96(6), 063001 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Dalibard J., Cohen-Tannoudji C.: Dressed-atom approach to atomic motion in laser light: the dipole force revisited. J. Opt. Soc. Am. B 2(11), 1707 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    Metcalf H., der Straten P.V.: Laser Cooling and Trapping. Springer, New York (1999)CrossRefGoogle Scholar
  39. 39.
    Grimm R., Weidemüller M., Ovchinnikov Y.B.: Optical dipole traps for neutral atoms. Mol. Opt. Phys. 42, 95 (2000)CrossRefGoogle Scholar
  40. 40.
    Kasevich M., Chu S.: Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett. 69(12), 1741 (1992)ADSCrossRefGoogle Scholar
  41. 41.
    Hamann S.E., Haycock D.L., Klose G., Pax P.H., Deutsch I.H., Jessen P.S.: Resolved-sideband Raman cooling to the ground state of an optical lattice. Phys. Rev. Lett. 80(19), 4149 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    Cornell E.A., Wieman C.E.: Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74(3), 875 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Ketterle W.: Nobel lecture: when atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74(4), 1131 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Cline R.A., Miller J.D., Matthews M.R., Heinzen D.J.: Spin relaxation of optically trapped atoms by light scattering. Opt. Lett. 19, 207 (1994)ADSCrossRefGoogle Scholar
  45. 45.
    Mompart J., Eckert K., Ertmer W., Birkl G., Lewenstein M.: Quantum computing with spatially delocalized qubits. Phys. Rev. Lett. 90(14), 147901 (2003)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Eckert K., Mompart J., Yi X.X., Schliemann J., Bruß D., Birkl G., Lewenstein M.: Quantum computing in optical microtraps based on the motional states of neutral atoms. Phys. Rev. A 66(4), 042317 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    Eckert K., Lewenstein M., Corbalán R., Birkl G., Ertmer W., Mompart J.: Three-level atom optics via the tunneling interaction. Phys. Rev. A 70(2), 023606 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    Eckert K., Mompart J., Corbalán R., Lewenstein M., Birkl G.: Three level atom optics in dipole traps and waveguides. Opt. Commun. 264(2), 264 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    Happer W.: Optical pumping. Rev. Mod. Phys. 44(2), 169 (1972)ADSCrossRefGoogle Scholar
  50. 50.
    Weiner J., Bagnato V.S., Zilio S., Julienne P.S.: Experiments and theory in cold and ultracold collisions. Rev. Mod. Phys. 71(1), 1 (1999)ADSCrossRefGoogle Scholar
  51. 51.
    Bergamini S., Darquié B., Jones M., Jacubowiez L., Browaeys A., Grangier P.: Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator. J. Opt. Soc. Am. B 21(11), 1889 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    Boyer V., Godun R.M., Smirne G., Cassettari D., Chandrashekar C.M., Deb A.B., Laczik Z.J., Foot C.J.: Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator. Phys. Rev. A 73(3), 031402 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    Micheli A., Brennen G.K., Zoller P.: A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341 (2006)CrossRefGoogle Scholar
  54. 54.
    Amico L., Osterloh A., Cataliotti F.: Quantum many particle systems in ring-shaped optical lattices. Phys. Rev. Lett. 95(6), 063201 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    Olmos B., González-Férez R., Lesanovsky I.: Collective Rydberg excitations of an atomic gas confined in a ring lattice. Phys. Rev. A 79(4), 043419 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Kuhr S., Alt W., Schrader D., Dotsenko I., Miroshnychenko Y., Rauschenbeutel A., Meschede D.: Analysis of dephasing mechanisms in a standing-wave dipole trap. Phys. Rev. A 72(2), 023406 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    Barenco A., Bennett C.H., Cleve R., DiVincenzo D.P., Margolus N., Shor P., Sleator T., Smolin J.A., Weinfurter H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)ADSCrossRefGoogle Scholar
  58. 58.
    Jaksch D., Briegel H.J., Cirac J.I., Gardiner C.W., Zoller P.: Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82(9), 1975 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    Benseny A., Fernández-Vidal S., Bagudà J., Corbalán R., Picón A., Roso L., Birkl G.: Atomtronics with holes: coherent transport of an empty site in a triple-well potential. J. Mompart Phys. Rev. A 82(1), 013604 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    Zhang X.L., Isenhower L., Gill A.T., Walker T.G., Saffman M.: Deterministic entanglement of two neutral atoms via Rydberg blockade. Phys. Rev. A 82(3), 030306 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    Jaksch D., Cirac J.I., Zoller P., Rolston S.L., Côté R., Lukin M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85(10), 2208 (2000)ADSCrossRefGoogle Scholar
  62. 62.
    Protsenko I.E., Reymond G., Schlosser N., Grangier P.: Operation of a quantum phase gate using neutral atoms in microscopic dipole traps. Phys. Rev. A 65(5), 052301 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    Saffman M., Walker T.G.: Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A 72(2), 022347 (2005)ADSCrossRefGoogle Scholar
  64. 64.
    Saffman M., Walker T.G., Mølmer K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82(3), 2313 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    Saffman M., Zhang X.L., Gill A.T., Isenhower L., Walker T.G.: Rydberg state mediated quantum gates and entanglement of pairs of neutral atoms. J. Phys. Conf. Ser. 264(1), 012023 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Malte Schlosser
    • 1
  • Sascha Tichelmann
    • 1
  • Jens Kruse
    • 1
  • Gerhard Birkl
    • 1
  1. 1.Institut für Angewandte PhysikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations