Prospects for fast Rydberg gates on an atom chip

  • Matthias M. Müller
  • Harald R. Haakh
  • Tommaso Calarco
  • Christiane P. Koch
  • Carsten Henkel
Article

Abstract

Atom chips are a promising candidate for a scalable architecture for quantum information processing provided a universal set of gates can be implemented with high fidelity. The difficult part in achieving universality is the entangling two-qubit gate. We consider a Rydberg phase gate for two atoms trapped on a chip and employ optimal control theory to find the shortest gate that still yields a reasonable gate error. Our parameters correspond to a situation where the Rydberg blockade regime is not yet reached. We discuss the role of spontaneous emission and the effect of noise from the chip surface on the atoms in the Rydberg state.

Keywords

Optimal control Phase gate Rydberg atoms Cavity quantum electrodynamics 

References

  1. 1.
    Zoller P., Beth T., Binosi D., Blatt R., Briegel H., Bruss D., Calarco T., Cirac J., Deutsch D., Eisert J., Ekert A., Fabre C., Gisin N., Grangier P., Grassl M., Haroche S., Imamoglu A., Karlson A., Kempe J., Kouwenhoven L., Kröll S., Leuchs G., Lewenstein M., Loss D., Lütkenhaus N., Massar S., Mooij J., Plenio M., Polzik E., Popescu S., Rempe G., Sergienko A., Suter D., Twamley J., Wendin G., Werner R., Winter A., Wrachtrup J., Zeilinger A.: Quantum information processing and communication: strategic report on current status, visions and goals for research in Europe. Eur. Phys. J. D 36(2), 203 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Nielsen M., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  3. 3.
    Brennen G.K., Caves C.M., Jessen P.S., Deutsch I.H.: Quantum logic gates in optical lattices. Phys. Rev. Lett. 82(5), 1060 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Jaksch D., Briegel H.J., Cirac J.I., Gardiner C.W., Zoller P.: Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82(9), 1975 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Calarco T., Hinds E.A., Jaksch D., Schmiedmayer J., Cirac J.I., Zoller P.: Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps. Phys. Rev. A 61, 022304 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Jaksch D., Cirac J.I., Zoller P., Rolston S.L., Côté R., Lukin M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85(10), 2208 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Buchkremer, F.B.J., Dumke, R., Volk, M., Müther, T., Birkl, G., Ertmer, W.: Quantum information processing with microfabricated optical elements, Laser Phys. 12(4), 736 (2002) http://www.maik.ru/contents/lasphys/lasphys4_2v12cont.htm
  8. 8.
    Sørensen A.S., van der Wal C.H., Childress L.I., Lukin M.D.: Capacitive coupling of atomic systems to mesoscopic conductors. Phys. Rev. Lett. 92, 063601 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Cirone M.A., Negretti A., Calarco T., Krüger P., Schmiedmayer J.: A simple quantum gate with atom chips. Eur. Phys. J. D 35(1), 165 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Treutlein P., Hänsch T.W., Reichel J., Negretti A., Cirone M.A., Calarco T.: Microwave potentials and optimal control for robust quantum gates on an atom chip. Phys. Rev. A 74, 022312 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Müller M., Lesanovsky I., Weimer H., Buchler H.P., Zoller P.: Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009)CrossRefGoogle Scholar
  12. 12.
    Somlói J., Kazakov V.A., Tannor D.J.: Controlled dissociation of I 2 via optical transitions between the x and b electronic states. Chem. Phys. 172, 85 (1993)CrossRefGoogle Scholar
  13. 13.
    Zhu W., Botina J., Rabitz H.: Rapidly convergent iteration methods for quantum optimal control of population. J. Chem. Phys. 108(5), 1953 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Palao J.P., Kosloff R.: Quantum computing by an optimal control algorithm for unitary transformations. Phys. Rev. Lett. 89, 188301 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Tesch C.M., de Vivie-Riedle R.: Quantum computation with vibrationally excited molecules. Phys. Rev. Lett. 89, 157901 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Palao J.P., Kosloff R.: Optimal control theory for unitary transformations. Phys. Rev. A 68, 062308 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Caneva T., Murphy M., Calarco T., Fazio R., Montangero S., Giovannetti V., Santoro G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Isenhower L., Urban E., Zhang X.L., Gill A.T., Henage T., Johnson T.A., Walker T.G., Saffman M.: Demonstration of a neutral atom controlled-not quantum gate. Phys. Rev. Lett. 104, 010503 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Wilk T., Gaëtan A., Evellin C., Wolters J., Miroshnychenko Y., Grangier P., Browaeys A.: Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Saffman M., Walker T.G., Mølmer K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82(3), 2313 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Müller, M.M., Reich, D.M., Murphy, M., Yuan, H., Vala, J., Whaley, K.B., Calarco, T., Koch, C.P.: Getting the best two-qubit gate for a real physical system (2011). ArXiv:1104.2337Google Scholar
  22. 22.
    Goerz M.H., Calarco T., Koch C.P.: The quantum speed limit of optimal controlled phasegates for trapped neutral atoms. J. Phys. B 44, 154011 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Folman R., Krüger P., Schmiedmayer J., Denschlag J.H., Henkel C.: Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263 (2002)Google Scholar
  24. 24.
    Fortágh J., Zimmermann C.: Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79(1), 235 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Reichel, J., Vuletić, V. (eds): Atom Chips. Wiley, Amsterdam (2011)Google Scholar
  26. 26.
    Kübler H., Shaffer J.P., Baluktsian T., Löw R., Pfau T.: Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells. Nat. Photonics 4(2), 112 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Tauschinsky, A., Thijssen, R.M.T., Whitlock, S., van Linden van den Heuvell, H.B., Spreeuw, R.J.C.: Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip. Phys. Rev. A 81, 063411 (2011); see also the paper by V. Y. F. Leung et al. in this special issueGoogle Scholar
  28. 28.
    Treutlein, P., Hommelhoff, P., Steinmetz, T., Hänsch, T.W., Reichel, J.: Coherence in microchip traps. Phys. Rev. Lett. 92, 203005 (2004). Erratum Phys. Rev. Lett. 93, 219904(E) (2004)Google Scholar
  29. 29.
    Gaëtan A., Miroshnychenko Y., Wilk T., Chotia A., Vitaeu M., Comparat D., Pillet P., Browaeys A., Grangier P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)CrossRefGoogle Scholar
  30. 30.
    Kosloff R.: Propagation methods for molecular dynamics. Annu. Rev. Phys. Chem. 45, 145 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    Lesanovsky I., Schmelcher P.: Selected aspects of the quantum dynamics and electronic structure of atoms in magnetic microtraps. Eur. Phys. J. D 35(1), 31 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Bill J., Trappe M.I., Lesanovsky I., Schmelcher P.: Resonant quantum dynamics of neutral spin-1 particles in a magnetic guide. Phys. Rev. A 73, 053609 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Bartana A., Kosloff R., Tannor D.J.: Laser cooling of internal degrees of freedom. II. J. Chem. Phys. 106(4), 1435 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    Ohtsuki Y., Zhu W., Rabitz H.: Monotonically convergent algorithm for quantum optimal control with dissipation. J. Chem. Phys. 110(20), 9825 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    Palao J.P., Kosloff R., Koch C.P.: Protecting coherence in optimal control theory: state dependent constraint approach. Phys. Rev. A 77, 063412 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Ndong M., Tal-Ezer H., Kosloff R., Koch C.P.: Propagator for inhomogeneous Schrödinger equations. J. Chem. Phys. 130, 124108 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Saffman M., Zhang X.L., Gill A.T., Isenhower L., Walker T.G.: Rydberg state mediated quantum gates and entanglement of pairs of neutral atoms. J. Phys. Conf. Ser. 264, 012023 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    McGuirk J.M., Harber D.M., Obrecht J.M., Cornell E.A.: Alkali-metal adsorbate polarization on conducting and insulating surfaces probed with bose-einstein condensates. Phys. Rev. A 69, 062905 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    Gallagher T.F.: Rydberg atoms. Rep. Prog. Phys. 51(2), 143 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    Carter J.D., Martin J.D.D.: Energy shifts of Rydberg atoms due to patch fields near metal surfaces. Phys. Rev. A 83, 032902 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Walker T.G., Saffman M.: Zeros of Rydberg–Rydberg Fö(r)ster interactions. J. Phys. B 38(2), S309 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Lorenzen C.J., Niemax K.: Quantum defects of the n 2 p 1/2,3/2 levels in 39 K I and 85 Rb I. Phys. Scr. 27, 300 (1983)ADSCrossRefGoogle Scholar
  43. 43.
    Li W., Mourachko I., Noel M., Gallagher T.: Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: quantum defects of the ns, np, and nd series. Phys. Rev. A 67, 052502 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    Dubessy R., Coudreau T., Guidoni L.: Electric field noise above surfaces: a model for heating rate scaling law in ion traps. Phys. Rev. A 80, 031402(R) (2009)ADSCrossRefGoogle Scholar
  45. 45.
    Henkel C., Wilkens M.: Heating of trapped atoms near thermal surfaces. Europhys. Lett. 47, 414 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    Turchette Q.A., Kielpinski D., King B.E., Leibfried D., Meekhof D.M., Myatt C.J., Rowe M.A., Sackett C.A., Wood C.S., Itano W.M., Monroe C., Wineland D.J.: Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    Labaziewicz J., Ge Y., Leibrandt D.R., Wang S.X., Shewmon R., Chuang I.L.: Temperature dependence of electric field noise above gold surfaces. Phys. Rev. Lett. 101, 180602 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    Leibrandt D., Yurke B., Slusher R.: Modeling ion trap thermal noise decoherence. Quantum Inf. Comput. 7(1–2), 52 (2007)MathSciNetMATHGoogle Scholar
  49. 49.
    Deslauriers L., Olmschenk S., Stick D., Hensinger W.K., Sterk J., Monroe C.: Scaling and suppression of anomalous quantum decoherence in ion traps. Phys. Rev. Lett. 97, 103007 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    Epstein R.J., Seidelin S., Leibfried D., Wesenberg J.H., Bollinger J.J., Amini J.M., Blakestad R.B., Britton J., Home J.P., Itano W.M., Jost J.D., Knill E., Langer C., Ozeri R., Shiga N., Wineland D.J.: Simplified motional heating rate measurements of trapped ions. Phys. Rev. A 76, 033411 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    Daniilidis N., Narayanan S., Möller S.A., Clark R., Lee T.E., Leek P.J., Wallraff A., Schulz S., Schmidt-Kaler F., Häffner H.: Fabrication and heating rate study of microscopic surface electrode ion traps. New J. Phys. 13, 013032 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    Purcell E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  53. 53.
    Crosse, J.A., Ellingsen, S.Å., Clements, K., Buhmann, S.Y., Scheel, S.: Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces, Phys. Rev. A 82, 010901(R) (2010). Erratum Phys. Rev. A 82, 029902 (2010)Google Scholar
  54. 54.
    Ellingsen S.A., Buhmann S.Y., Scheel S.: Temperature-invariant Casimir-Polder forces despite large thermal photon numbers. Phys. Rev. Lett. 104, 223003 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    Theodosiou C.E.: Lifetimes of alkali-metal-atom Rydberg states. Phys. Rev. A 30(6), 2881 (1984)ADSCrossRefGoogle Scholar
  56. 56.
    Wylie J.M., Sipe J.E.: Quantum electrodynamics near an interface. Phys. Rev. A 30(3), 1185 (1984)ADSCrossRefGoogle Scholar
  57. 57.
    Failache H., Saltiel S., Fischer A., Bloch D., Ducloy M.: Resonant quenching of gas-phase Cs atoms induced by surface polaritons. Phys. Rev. Lett. 88, 243603 (2002)ADSCrossRefGoogle Scholar
  58. 58.
    Hyafil P., Mozley J., Perrin A., Tailleur J., Nogues G., Brune M., Raimond J.M., Haroche S.: Coherence-preserving trap architecture for long-term control of giant Rydberg atoms. Phys. Rev. Lett. 93, 103001 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    Courtois J.Y., Courty J.M., Mertz J.C.: Internal dynamics of multilevel atoms near a vacuum-dielectric interface. Phys. Rev. A 53, 1862 (1996)ADSCrossRefGoogle Scholar
  60. 60.
    Eberlein C., Robaschik D.: Inadequacy of perfect-reflector models in cavity qed for systems with low-frequency excitations. Phys. Rev. Lett. 92, 233602 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Matthias M. Müller
    • 1
  • Harald R. Haakh
    • 2
  • Tommaso Calarco
    • 1
  • Christiane P. Koch
    • 3
  • Carsten Henkel
    • 2
  1. 1.Institut für QuanteninformationsverarbeitungUniversität UlmUlmGermany
  2. 2.Institut für Physik und AstronomieUniversität PotsdamPotsdamGermany
  3. 3.Institut für PhysikUniversität KasselKasselGermany

Personalised recommendations