Quantum Information Processing

, 10:955

Microtrap arrays on magnetic film atom chips for quantum information science

  • V. Y. F. Leung
  • A. Tauschinsky
  • N. J. van Druten
  • R. J. C. Spreeuw
Open Access


We present two different strategies for developing a quantum information science platform, based on our experimental results with magnetic microtrap arrays on a magnetic-film atom chip. The first strategy aims for mesoscopic ensemble qubits in a lattice of ~5 μm period, so that qubits can be individually addressed and interactions can be mediated by Rydberg excitations. The second strategy aims for direct quantum simulators using sub-optical lattices of ~100 nm period. These would allow the realization of condensed matter inspired quantum many-body systems, such as Hubbard models in new parameter regimes. The two approaches raise quite different issues, some of which are identified and discussed.


Magnetic potential Lattice Microtrap Atom chip Quantum information Rydberg gate Mesoscopic ensemble qubit Sub-optical FePt magnetic film Microscale array Quantum simulator Shift register Single site addressing Nanofabrication Single atom detection 


  1. 1.
    Fortágh J., Zimmermann C.: Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Treutlein P., Hommelhoff P., Steinmetz T., Hänsch T.W., Reichel J.: Coherence in microchip traps. Phys. Rev. Lett. 92, 20300 (2004)CrossRefGoogle Scholar
  3. 3.
    Deutsch C., Ramirez-Martinez F., Lacroûte C., Reinhard F., Schneider T., Fuchs J.N., Piéchon F., Laloë F., Reichel J., Rosenbusch P.: Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105, 020401 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Whitlock S., Gerritsma R., Fernholz T., Spreeuw R.J.C.: Two-dimensional array of microtraps with atomic shift register on a chip. New J. Phys. 11, 023021 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Gerritsma R., Whitlock S., Fernholz T., Schlatter H., Luigjes J.A., Thiele J.U., Goedkoop J.B., Spreeuw R.J.C.: Lattice of microtraps for ultracold atoms based on patterned magnetic films. Phys. Rev. A 76, 033408 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Singh M., Volk M., Akulshin A., Sidorov A., McLean R., Hannaford P.: One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip. J. Phys. B 41, 065301 (2008)CrossRefGoogle Scholar
  7. 7.
    Llorente Garcia I., Darquié B., Curtis E.A., Sinclair C.D.J., Hinds E.A.: Experiments on a videotape atom chip: fragmentation and transport studies. New J. Phys. 12, 093017 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Jaksch D., Cirac J.I., Zoller P., Rolston S.L., Côté R., Lukin M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Lukin M.D., Fleischhauer M., Côté M.R., Duan L.M., Jaksch D., Cirac J.I., Zoller P.: Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Weimer H., Müller M., Lesanovsky I., Zoller P., Büchler H.P.: A Rydberg quantum simulator. Nat. Phys. 6, 382 (2010)CrossRefGoogle Scholar
  11. 11.
    Bulata I., Nori F.: Quantum simulators. Nature 326, 108 (2009)Google Scholar
  12. 12.
    Whitlock S., Ockeloen C.F., Spreeuw R.J.C.: Sub-poissonian atom-number fluctuations by Three-Body Loss in Mesoscopic Ensembles. Phys. Rev. Lett. 104, 120402 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Tauschinsky A., Thijssen R.M.T., Whitlock S., van den Heuvell H.B., van Linden H.B., Spreeuw R.J.C.: Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip. Phys. Rev. A 81, 063411 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Teepen T.F., van Veen A.H.V., van ’t Spijker H., Steenbrink S.W.H.K., van Zuuk A., Heerkens C.Th.H., Wieland M.J., van Druten N.J., Kruit P.: Fabrication and characterization of p-type silicon field-emitter arrays for lithography. J. Vac. Sci. Tech. B 23, 359 (2005)CrossRefGoogle Scholar
  15. 15.
    de Jonge N., van Druten N.J.: Field emission from individual multiwalled carbon nanotubes prepared in an electron microscope. Ultramicroscopy 95, 85 (2002)CrossRefGoogle Scholar
  16. 16.
    Brion E., Mølmer K., Saffman M.: Quantum computing with collective ensembles of multilevel systems quantum computing with collective ensembles of multilevel systems. Phys. Rev. Lett. 99, 260501 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Müller M., Lesanovsky I. I., Weimer H., Büchler H.P., Zoller P.: Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009)CrossRefGoogle Scholar
  18. 18.
    Saffman M., Mølmer K.: Efficient multiparticle entanglement via asymmetric Rydberg blockade. Phys. Rev. Lett. 102, 240502 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Heidemann R., Raitzsch U., Bendkowsky V., Butscher B., Löw R., Pfau T.: Rydberg excitation of Bose-Einstein condensates. Phys. Rev. Lett. 100, 033601 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Urban E., Johnson T.A., Henage T., Isenhower L., Yavuz D.D., Walker T.G., Saffman M.: Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009)CrossRefGoogle Scholar
  21. 21.
    Gaetan A., Miroshnychenko Y., Wilk T., Chotia A., Viteau M., Comparat D., Pillet P., Browaeys A., Grangier P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)CrossRefGoogle Scholar
  22. 22.
    van Ditzhuijzen C.S.E., Koenderink A.F., Hernández J.V., Robicheaux F., Noordam L.D., van Linden H.B., van den Heuvell : Spatially resolved observation of Dipole-Dipole interaction between Rydberg atoms. Phys. Rev. Lett. 100, 243201 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Wilk T., Gaëtan A., Evellin C., Wolters J., Miroshnychenko Y., Grangier P., Browaeys A.: Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Isenhower L., Urban E., Zhang X.L., Gill A.T., Henage T., Johnson T.A., Walker T.G., Saffman M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Schmied R., Leibfried D., Spreeuw R.J.C., Whitlock S.: Optimized magnetic lattices for ultracold atomic ensembles. New J. Phys. 12, 103029 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Anderson A., Haroche S., Hinds E.A., Jhe W., Meschede D.: Measuring the van der Waals forces between a Rydberg atom and a metallic surface. Phys. Rev. A 37, 3594 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    Sandoghdar V., Sukenik C.I., Hinds E.A., Haroche S.: Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. Phys. Rev. Lett. 68, 3432 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    Mohapatra A.K., Jackson T.R., Adams C.S.: Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Weatherill K.J., Pritchard J.D., Abel R.P., Bason M.G., Mohapatra A.K., Adams C.S.: Electromagnetically induced transparency of an interacting cold Rydberg ensemble. J. Phys. B 41, 201002 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Obrecht J.M., Wild R.J., Cornell E.A.: Measuring electric fields from surface contaminants with neutral atoms. Phys. Rev. A 75, 062903 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Stehle C., Bender H., Jessen F., Zimmermann C., Slama S.: Ad- and desorption of Rb atoms on a gold nanofilm measured by surface plasmon polaritons. New J. Phys. 12, 083066 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Ockeloen C.F., Tauschinsky A.F., Spreeuw R.J.C., Whitlock S.: Detection of small atom numbers through image processing. Phys. Rev. A 82, 061606 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Greiner M., Regal C.A., Stewart J.T., Jin D.S.: Probing pair-correlated fermionic atoms through correlations in atom shot noise. Phys. Rev. Lett. 94, 110401 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Goncharenko A.V., Wang J.-K., Chang Y.-C.: Electric near-field enhancement of a sharp semi-infinite conical probe: material and cone angle dependence. Phys. Rev. B 74, 235442 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Forbes R., Edgcombe C.J., Valdrè U.: Some comments on models for field enhancement. Ultramicroscopy 95, 57 (2003)CrossRefGoogle Scholar
  36. 36.
    Greiner M., Mandel O., Esslinger T., Hänsch T.W., Bloch I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Gerbier F., Widera A., Fölling S., Mandel O., Gericke T., Bloch I.: Interference pattern and visibility of a Mott insulator. Phys. Rev. A 72, 053606 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Ho T.L., Zhou Q.: Intrinsic heating and cooling in Adiabatic processes for Bosons in optical lattices. Phys. Rev. Lett. 99, 120404 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    Spielman I.B., Phillips W.D., Porto J.V.: Mott-insulator transition in a two-dimensional atomic bose gas. Phys. Rev. Lett. 98, 080404 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    Leanhardt A.E., Pasquini T.A., Saba M., Schirotzek A., Shin Y., Kielpinski D., Pritchard D.E., Ketterle W.: Cooling Bose-Einstein condensates below 500 picokelvin. Science 301, 1513 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    Schmied R., Wesenberg J.H., Leibfried D.: Optimal surface-electrode trap lattices for quantum simulation with trapped ions. Phys. Rev. Lett. 102, 233002 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Ghanbari S., Kieu T.D., Sidorov A., Hannaford P.: Permanent magnetic lattices for ultracold atoms and quantum degenerate gases. J. Phys. B 39, 847 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Vieu C., Carcenac F., Pépin A., Chen Y., Mejias M., Lebib A., Manin-Ferlazzo L., Couraud L., Launois H.: Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164, 111 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    Kurth F., Weisheit M., Leistner K., Gemming T., Holzapfel B., Schultz L., Fähler S.: Finite-size effects in highly ordered ultrathin FePt films. Phys. Rev. B 82, 184404 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Haller E., Mark M.J., Hart R., Danzl J.G., Reichsöllner L., Melezhik V., Schmelcher P., Nägerl H.-C.: Confinement-induced resonances in low-dimensional quantum systems. Phys. Rev. Lett. 104, 153203 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    Landragin A., Courtois J.Y., Labeyrie G., Vansteenkiste N., Westbrook C.I., Aspect A.: Measurement of the van der Waals force in an atomic mirror. Phys. Rev. Lett. 77, 1464 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    Henkel C., Pötting S., Wilkens M.: Loss and heating of particles in small and noisy traps. Appl. Phys. B 69, 379 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    Henkel C., Pötting S.: Coherent transport of matter waves. Appl. Phys. B 72, 73 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    Scheel S., Rekdal P.K., Knight P.L., Hinds E.A.: Atomic spin decoherence near conducting and superconducting films. Phys. Rev. A 72, 042901 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    Lin Y.J., Teper I., Chin C., Vuletic V.: Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces. Phys. Rev. Lett. 92, 050404 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    Bakr W.S., Gillen J.I., Peng A., Fölling S., Greiner M.: A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    Sherson J.F., Weitenberg C., Endres M., Cheneau M., Bloch I., Kuhr S.: Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    Grüner B., Jag M., Stibor A., Visanescu G., Häffner M., Kern D., Günther A., Fortágh J.: Integrated atom detector based on field ionization near carbon nanotubes. Phys. Rev. A 80, 063422 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Goodsell A., Ristroph T., Golovchenko J.A., Hau L.V.: Field ionization of cold atoms near the Wall of a single carbon nanotube. Phys. Rev. Lett. 104, 133002 (2010)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • V. Y. F. Leung
    • 1
  • A. Tauschinsky
    • 1
  • N. J. van Druten
    • 1
  • R. J. C. Spreeuw
    • 1
  1. 1.Van der Waals-Zeeman InstituteUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations