Quantum computing and quantum simulation with group-II atoms

Article

Abstract

Recent experimental progress in controlling neutral group-II atoms for optical clocks, and in the production of degenerate gases with group-II atoms has given rise to novel opportunities to address challenges in quantum computing and quantum simulation. In these systems, it is possible to encode qubits in nuclear spin states, which are decoupled from the electronic state in the 1S0 ground state and the long-lived 3P0 metastable state on the clock transition. This leads to quantum computing scenarios where qubits are stored in long lived nuclear spin states, while electronic states can be accessed independently, for cooling of the atoms, as well as manipulation and readout of the qubits. The high nuclear spin in some fermionic isotopes also offers opportunities for the encoding of multiple qubits on a single atom, as well as providing an opportunity for studying many-body physics in systems with a high spin symmetry. Here we review recent experimental and theoretical progress in these areas, and summarise the advantages and challenges for quantum computing and quantum simulation with group-II atoms.

Keywords

Quantum computing Quantum simulation Group-II atoms Alkaline earth atoms Optical lattices State-dependent lattices Qubit addressing Cold collisions Exchange gates Qubit cooling 

References

  1. 1.
    Ye J., Kimble H.J., Katori H.: Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Takamoto M., Hong F.-L., Higashi R., Katori H.: An optical lattice clock. Nature 435, 321–325 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Ludlow A.D., Zelevinsky T., Campbell G.K., Blatt S., Boyd M.M., de Miranda M.H.G., Martin M.J., Thomsen J.W., Foreman S.M., Ye J., Fortier T.M., Stalnaker J.E., Diddams S.A., Le Coq Y., Barber Z.W., Poli N., Lemke N.D., Beck K.M., Oates C.W.: Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 319, 1805 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Barber Z., Stalnaker J., Lemke N., Poli N., Oates C., Fortier T., Diddams S., Hollberg L., Hoyt C., Taichenachev A., Yudin V.: Optical lattice induced light shifts in an Yb atomic clock. Phys. Rev. Lett. 100, 103002 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Derevianko A., Katori H.: Colloquium: Physics of optical lattice clocks. Rev. Mod. Phys. 83, 331 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Takasu Y., Maki K., Komori K., Takano T., Honda K., Kumakura M., Yabuzaki T., Takahashi Y.: Spin-Singlet Bose-Einstein condensation of two-electron atoms. Phys. Rev. Lett. 91, 040404 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Fukuhara T., Takasu Y., Kumakura M., Takahashi Y.: Degenerate fermi gases of ytterbium. Phys. Rev. Lett. 98, 030401 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Taie S., Takasu Y., Sugawa S., Yamazaki R., Tsujimoto T., Murakami R., Takahashi Y.: Realization of a SU(2) × SU(6) system of fermions in a cold atomic gas. Phys. Rev. Lett. 105, 190401 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Fukuhara T., Sugawa S., Sugimoto M., Taie S., Takahashi Y.: Mott insulator of ultracold alkaline-earth-metal-like atoms. Phys. Rev. A 79, 041604 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Sugawa S., Inaba K., Taie S., Yamazaki R., Yamashita M., Takahashi Y: Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions. Nature Phys. 7, 642 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Kraft S., Vogt F., Appel O., Riehle F., Sterr U.: Bose-Einstein condensation of alkaline earth atoms: 40Ca. Phys. Rev. Lett. 103, 130401 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Stellmer S., Tey M.K., Huang B., Grimm R., Schreck F.: Bose-Einstein condensation of strontium. Phys. Rev. Lett. 103, 200401 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Martinezde Escobar Y.N., Mickelson P.G., Yan M., DeSalvo B.J., Nagel S.B., Killian T.C.: Bose-Einstein condensation of 84Sr. Phys. Rev. Lett. 103, 200402 (2009)CrossRefGoogle Scholar
  14. 14.
    DeSalvo B.J., Yan M., Mickelson P.G., Martinezde Escobar Y.N., Killian T.C.: Degenerate fermi gas of 87Sr. Phys. Rev. Lett. 105, 030402 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Tey M. K., Stellmer S., Grimm R., Schreck F.: Double-degenerate Bose-Fermi mixture of strontium. Phys. Rev. A 82, 011608 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Reichenbach I., Deutsch I.H.: Sideband cooling while preserving coherences in the nuclear spin in group-II-like atoms. Phys. Rev. Lett. 99, 123001 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Yi W., Daley A.J., Pupillo G., Zoller P.: State-dependent, addressable subwavelength optical lattices with cold atoms. New J. Phys 10, 073015 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Childress L., Taylor J.M., Sørensen A.S., Lukin M.D.: Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters. Phys. Rev. A 72, 052330 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Daley A.J., Boyd M.M., Ye J., Zoller P.: Quantum computing with alkaline-earth-metal atoms. Phys. Rev. Lett. 101, 170504 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Gorshkov A.V., Rey A.M., Daley A.J., Boyd M.M., Ye J., Zoller P., Lukin M.D.: Alkaline-earth-metal atoms as few-qubit quantum registers. Phys. Rev. Lett. 102, 110503 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Daley, A.J., Ye, J., Zoller, P.: State-dependent lattices for quantum computing with alkaline-earth-metal atoms. Eur. Phys. J. D (2011). doi:10.1140/epjd/e2011-20095-2
  22. 22.
    Shibata K., Kato S., Yamaguchi A., Uetake S., Takahashi Y.: A scalable quantum computer with an ultranarrow optical transition of ultracold neutral atoms in an optical lattice. Appl. Phys. B Lasers Optics 97, 753 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Derevianko A., Cannon C.C.: Quantum computing with magnetically interacting atoms. Phys. Rev. A 70, 062319 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Hayes D., Julienne P.S., Deutsch I.H.: Quantum logic via the exchange blockade in ultracold collisions. Phys. Rev. Lett. 98, 070501 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Cazalilla M.A., Ho A.F., Ueda M.: Ultracold gases of ytterbium: ferromagnetism and Mott states in an SU(6) fermi system. New J. Phys. 11, 103033 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Gorshkov A.V., Hermele M., Gurarie V., Xu C., Julienne P.S., Ye J., Zoller P., Demler E., Lukin M.D., Rey A.M.: Two-orbital SU(N) magnetism with ultracold alkaline-earthn atoms. Nature Phys. 6, 289 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Gerbier F., Dalibard J.: Gauge fields for ultracold atoms in optical superlattices. New J. Phys. 12, 033007 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Diehl S., Yi W., Daley A., Zoller P.: Dissipation-induced d-wave pairing of fermionic atoms in an optical lattice. Phys. Rev. Lett. 105, 227001 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Hoyt C., Barber Z., Oates C., Fortier T., Diddams S., Hollberg L.: Observation and absolute frequency measurements of the 1S03P0 optical clock transition in neutral ytterbium. Phys. Rev. Lett. 95, 083003 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Porsev S., Derevianko A., Fortson E.: Possibility of an optical clock using the 61S0→63P0 o transition in 171,173Yb atoms held in an optical lattice. Phys. Rev. A 69, 021403 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Boyd M.M., Zelevinsky T., Ludlow A.D., Blatt S., Zanon-Willette T., Foreman S.M., Ye J.: Nuclear spin effects in optical lattice clocks. Phys. Rev. A 76, 022510 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Diedrich F., Bergquist J.C., Itano Wayne M., Wineland D.J.: Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403 (1989)ADSCrossRefGoogle Scholar
  33. 33.
    Jaksch D., Briegel H.-J., Cirac J.I., Gardiner C.W., Zoller P.: Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    Mandel O., Greiner M., Widera A., Rom T., Hänsch T. W., Bloch I.: Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Köhl M., Moritz H., Stöferle T., Günter K., Esslinger T.: Fermionic atoms in a three dimensional optical lattice: observing fermi surfaces, dynamics, and interactions. Phys. Rev. Lett. 94, 080403 (2005)CrossRefGoogle Scholar
  36. 36.
    Viverit L., Menotti C., Calarco T., Smerzi A.: Efficient and Robust initialization of a qubit register with fermionic atoms. Phys. Rev. Lett. 93, 110401 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Rabl P., Daley A.J., Fedichev P.O., Cirac J.I., Zoller P.: Defect-suppressed atomic crystals in an optical lattice. Phys. Rev. Lett. 91, 110403 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    Griessner A., Daley A.J., Jaksch D., Zoller P.: Fault-tolerant dissipative preparation of atomic quantum registers with fermions. Phys. Rev. A 72, 032332 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Nelson K.D., Li X., Weiss D.S.: Imaging single atoms in a three-dimensional array. Nature Phys. 3, 556 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    Bakr W.S., Gillen J.I., Peng A., Flling S., Greiner M.: A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Sherson J.F., Weitenberg C., Endres M., Cheneau M., Bloch I., Kuhr S.: Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Jaksch D., Cirac J.I., Zoller P., Rolston S., Côté R., Lukin M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    Urban E., Johnson T.A., Henage T., Isenhower L., Yavuz D.D., Walker T.G., Saffman M.: Observation of Rydberg blockade between two atoms. Nature Phys. 5, 110 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Gaëtan A., Miroshnychenko Y., Wilk T., Chotia A., Viteau M., Comparat D., Pillet P., Browaeys A., Grangier P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nature Phys. 5, 115 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    Anderlini M., Lee P. J., Brown B. L., Sebby-Strabley J., Phillips W. D., Porto J. V.: Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452–456 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    Zelevinsky T., Boyd M.M., Ludlow A.D., Ido T., Ye J., Ciurylo R., Naidon P., Julienne P.S.: Narrow line photoassociation in an optical lattice. Phys. Rev. Lett. 96, 203201 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Blatt S., Nicholson T.L., Bloom B.J., Williams J.R., Thomsen J.W., Julienne P.S., Ye J.: Measurement of optical Feshbach resonances in an ideal gas. Phys. Rev. Lett. 107, 073202 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Yamazaki R., Taie S., Sugawa S., Takahashi Y.: Ubmicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate. Phys. Rev. Lett. 105, 050405 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Reichenbach I., Julienne P.S., Deutsch I.H.: Controlling nuclear spin exchange via optical Feshbach resonances in 171 Yb. Phys. Rev. A 80, 020701 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    Goyal K., Reichenbach I., Deutsch I.: p-wave optical Feshbach resonances in 171Yb. Phys. Rev. A 82, 062704 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    Santra R., Greene C.H.: Tensorial analysis of the long-range interaction between metastable alkaline-earth-metal atoms. Phys. Rev. Lett. 67, 15 (2003)Google Scholar
  52. 52.
    Kokoouline V., Santra R., Greene C.H.: Multichannel cold collisions between metastable Sr atoms. Phys. Rev. A 90, 253201 (2003)Google Scholar
  53. 53.
    Gemelke N., Zhang X., Hung C.-L., Chin C.: In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Nature 460, 995 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Bakr W.S., Peng A., Tai M.E., Ma R., Simon J., Gillen J.I., Fölling S., Pollet L., Greiner M.: Probing the superfluid–to–Mott insulator transition at the single-atom level. Science 329, 547 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    Weitenberg C., Endres M., Sherson J.F., Cheneau M., Schauß P., Fukuhara T., Bloch I., Kuhr S.: Single-spin addressing in an atomic Mott insulator. Nature 471, 319 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    Gericke T., Würtz P., Reitz D., Langen T., Ott H.: High-resolution scanning electron microscopy of an ultracold quantum gas. Nature Phys. 4, 949 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    Karski M., Förster L., Choi J.M., Alt W., Widera A., Meschede D.: Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging. Phys. Rev. Lett. 102, 053001 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    Briegel H.J., Browne D.E., Dür W., Raussendorf R., Vanden Nest M.: Measurement-based quantum computation. Nature Phys. 5, 19 (2009)CrossRefGoogle Scholar
  59. 59.
    Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)ADSCrossRefGoogle Scholar
  60. 60.
    Blatt R., Wineland D.: Entangled states of trapped atomic ions. Nature 453, 1008 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    Leibfried D., Blatt R., Monroe C., Wineland D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    Gardiner C. W., Ye J., Nagerl H.C., Kimble H.J.: Evaluation of heating effects on atoms trapped in an optical trap. Phys. Rev. A 61, 045801 (2000)ADSCrossRefGoogle Scholar
  63. 63.
    Savard T.A., O’Hara K.M., Thomas J.E.: Laser-noise-induced heating in far-off resonance optical traps. Phys. Rev. A 56, R1095 (1997)ADSCrossRefGoogle Scholar
  64. 64.
    Bishof M., Lin Y., Swallows M.D., Gorshkov A.V., Ye J., Rey A.M.: Resolved atomic interaction sidebands in an optical clock transition. Phys. Rev. Lett. 106, 250801 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    Traverso A., Chakraborty R., Escobar Y. Martinez, Mickelson P., Nagel S., Yan M., Killian T.: Inelastic and elastic collision rates for triplet states of ultracold strontium. Phys. Rev. A 79, 060702 (2009)ADSCrossRefGoogle Scholar
  66. 66.
    Kitagawa M., Enomoto K., Kasa K., Takahashi Y., Ciuryło R., Naidon P., Julienne P.S.: Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of s-wave scattering lengths. Phys. Rev. A 77, 012719 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    Wu C., Hu J., Zhang S.: Exact SO(5) symmetry in the spin-3/2 fermionic system. Phys. Rev. Lett. 91, 186402 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    Wu C.: Exotic many-body physics with large-spin fermi gases. Physics 3, 92 (2010)CrossRefGoogle Scholar
  69. 69.
    Rapp A., Zaránd G., Honerkamp C., Hofstetter W.: Color superfluidity and “Baryon” formation in ultracold fermions. Phys. Rev. Lett. 98, 160405 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    Capponi S., Roux G., Lecheminant P., Azaria P., Boulat E., White S.: Molecular superfluid phase in systems of one-dimensional multicomponent fermionic cold atoms. Phys. Rev. A 77, 013624 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    Azaria P., Capponi S., Lecheminant P.: Three-component fermi gas in a one-dimensional optical lattice. Phys. Rev. A 80, 041604 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    Rapp A., Hofstetter W., Zarand G.: Trionic phase of ultracold fermions in an optical lattice: a variational study. Phys. Rev. B 77, 144520 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    Cherng R.W., Refael G., Demler E.: Superfluidity and magnetism in multicomponent ultracold fermions. Phys. Rev. Lett. 99, 130406 (2007)ADSCrossRefGoogle Scholar
  74. 74.
    Titvinidze I., Privitera A., Chang S., Diehl S., Baranov M.A., Daley A., Hofstetter W.: Magnetism and domain formation in SU(3)-symmetric multi-species fermi mixtures. New J. Phys. 13, 035013 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    Hermele M., Gurarie V., Rey A.M.: Mott insulators of ultracold fermionic alkaline earth atoms: underconstrained magnetism and chiral spin liquid. Phys. Rev. Lett. 103, 135301 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    Foss-Feig M., Hermele M., Rey A.M.: Probing the Kondo lattice model with alkaline-earth-metal atoms. Phys. Rev. A 81, 051603 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    Nonne H., Boulat E., Capponi S., Lecheminant P.: Phase diagram of one-dimensional alkaline-earth cold fermionic atoms. Mod. Phys. Lett. B 25, 955 (2011)ADSCrossRefGoogle Scholar
  78. 78.
    Tóth T., Läuchli A., Mila F., Penc K.: Three-sublattice ordering of the SU(3) Heisenberg model of three-flavor fermions on the square and cubic lattices. Phys. Rev. Lett. 105, 265301 (2010)ADSCrossRefGoogle Scholar
  79. 79.
    Guan X., Lee J.Y., Batchelor M., Yin X.G., Chen S.: Universal Tomonaga-Luttinger liquid phases in one-dimensional strongly attractive SU(N) fermionic cold atoms. Phys. Rev. A 82, 021606 (2010)ADSCrossRefGoogle Scholar
  80. 80.
    Takeuchi M., Takei N., Doi K., Zhang P., Ueda M., Kozuma M.: Single-nuclear-spin cavity QED. Phys. Rev. A 81, 062308 (2010)ADSCrossRefGoogle Scholar
  81. 81.
    Xu C.: Liquids in multiorbital SU(N) magnets made up of ultracold alkaline-earth atoms. Phys. Rev. B 81, 144431 (2010)ADSCrossRefGoogle Scholar
  82. 82.
    Ulbricht T., Molina R., Thomale R., Schmitteckert P.: Color-charge separation in trapped SU(3) fermionic atoms. Phys. Rev. A 82, 011603 (2010)ADSCrossRefGoogle Scholar
  83. 83.
    Hazzard, K.R.A., Gurarie, V., Hermele, M., Rey, A.M.: High temperature thermodynamics of fermionic alkaline earth atoms in optical lattices. arXiv:1011.0032v2 (2010)Google Scholar
  84. 84.
    McKay D., De Marco B.: Cooling in strongly correlated optical lattices: prospects and challenges. Rep. Prog. Phys. 74, 054401 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of PittsburghPittsburghUSA

Personalised recommendations