Multibit CkNOT quantum gates via Rydberg blockade

Article

Abstract

Long range Rydberg blockade interactions have the potential for efficient implementation of quantum gates between multiple atoms. Here we present and analyze a protocol for implementation of a k-atom controlled NOT (CkNOT) neutral atom gate. This gate can be implemented using sequential or simultaneous addressing of the control atoms which requires only 2k + 3 or 5 Rydberg π pulses respectively. A detailed error analysis relevant for implementations based on alkali atom Rydberg states is provided which shows that gate errors less than 10% are possible for k = 35.

Keywords

Quantum computing Rydberg atoms 

References

  1. 1.
    Gaëtan A., Miroshnychenko Y., Wilk T., Chotia A., Viteau M., Comparat D., Pillet P., Browaeys A., Grangier P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)CrossRefGoogle Scholar
  2. 2.
    Urban E., Johnson T.A., Henage T., Isenhower L., Yavuz D.D., Walker T.G., Saffman M.: Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009)CrossRefGoogle Scholar
  3. 3.
    Wilk T., Gaëtan A., Evellin C., Wolters J., Miroshnychenko Y., Grangier P., Browaeys A.: Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Isenhower L., Urban E., Zhang X.L., Gill A.T., Henage T., Johnson T.A., Walker T.G., Saffman M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Zhang X.L., Isenhower L., Gill A.T., Walker T.G., Saffman M.: Deterministic entanglement of two neutral atoms via Rydberg blockade. Phys. Rev. A 82, 030306(R) (2010)ADSGoogle Scholar
  6. 6.
    Jaksch D., Cirac J.I., Zoller P., Rolston S.L., Côté R., Lukin M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Saffman M., Walker T.G., Mølmer K.: Elementary gates for quantum computation. Rev. Mod. Phys. 82, 2313 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Barenco A., Bennett C.H., Cleve R., DiVincenzo D.P., Margolus N., Shor P., Sleator T., Smolin J.A., Weinfurter H.: Quantum computation and quantum information. Phys. Rev. A 52, 3457 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  10. 10.
    Lukin M.D., Fleischhauer M., Cote R., Duan L.M., Jaksch D., Cirac J.I., Zoller P.: Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Brion E., Mølmer K., Saffman M.: Quantum computing with collective ensembles of multilevel systems. Phys. Rev. Lett. 99, 260501 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Møller D., Madsen L.B., Mølmer K.: Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100, 170504 (2008)CrossRefGoogle Scholar
  13. 13.
    Müller M., Lesanovsky I., Weimer H., Büchler H.P., Zoller P.: Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009)CrossRefGoogle Scholar
  14. 14.
    Saffman M., Mølmer K.: Efficient multiparticle entanglement via asymmetric Rydberg blockade. Phys. Rev. Lett. 102, 240502 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Weimer H., Müller M., Lesanovsky I., Zoller P., Büchler H.P.: A Rydberg quantum simulator. Nat. Phys. 6, 382 (2010)CrossRefGoogle Scholar
  16. 16.
    Maslov D., Dueck G.: Improved quantum cost for n-bit Toffoli gates. Electron. Lett. 39, 1790 (2003)CrossRefGoogle Scholar
  17. 17.
    Shende V.V., Markov I.L.: On the CNOT-cost of Toffoli gates. Quantum Inf. Comput. 9, 0461 (2009)MathSciNetGoogle Scholar
  18. 18.
    Mølmer, K., Isenhower, L., Saffman, M.: Efficient Grover search with Rydberg blockade. J. Phys B. arXiv:1102.3573, to appear (2011)Google Scholar
  19. 19.
    Brion E., Mouritzen A.S., Mølmer K.: Conditional dynamics induced by new configurations for Rydberg dipoledipole interactions. Phys. Rev. A 76, 022334 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Saffman M., Zhang X.L., Gill A.T., Isenhower L., Walker T.G.: Rydberg state mediated quantum gates and entanglement of pairs of neutral atoms. J. Phys. Conf. Ser. 264, 012023 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Saffman M., Walker T.G.: Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A 72, 022347 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Saffman M., Mølmer K.: Scaling the neutral-atom Rydberg gate quantum computer by collective encoding in Holmium atoms. Phys. Rev. A 78, 012336 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Walker T.G., Saffman M.: Consequences of Zeeman degeneracy for the van der Waals blockade between Rydberg atoms. Phys. Rev. A 77, 032723 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Knill E., Leibfried D., Reichle R., Britton J., Blakestad R.B., Jost J.D., Langer C., Ozeri R., Seidelin S., Wineland D.J.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Benhelm J., Kirchmair G., Roos C.F., Blatt R.: Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463 (2008)CrossRefGoogle Scholar
  26. 26.
    Pohl T., Berman P.R.: Breaking the dipole blockade: nearly resonant dipole interactions in few-atom systems. Phys. Rev. Lett. 102, 013004 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Beterov I.I., Ryabtsev I.I., Tretyakov D.B., Entin V.M.: Quasiclassical calculations of blackbody-radiationinduced depopulation rates and effective lifetimes of Rydberg ns, np, and nd alkali-metal atoms with n <= 80. Phys. Rev. A 79, 052504 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Roos I., Mølmer K.: Quantum computing with an inhomogeneously broadened ensemble of ions: suppression of errors from detuning variations by specially adapted pulses and coherent population trapping. Phys. Rev. A 69, 022321 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Bohlouli-Zanjani P., Petrus J.A., Martin J.D.D.: Enhancement of Rydberg atom interactions using ac stark shifts. Phys. Rev. Lett. 98, 203005 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Knill E.: Quantum computing with realistically noisy devices. Nature (London) 434, 39 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Wang D.S., Fowler A.G., Hollenberg L.C.L.: Surface code quantum computing with error rates over 1%. Phys. Rev. A 83, 020302 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WisconsinMadisonUSA
  2. 2.Lundbeck Foundation Theoretical Center for Quantum System Research, Department of Physics and AstronomyUniversity of AarhusAarhusDenmark

Personalised recommendations