Quantum computing implementations with neutral particles

  • Antonio Negretti
  • Philipp Treutlein
  • Tommaso Calarco
Article

Abstract

We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.

Keywords

Quantum information processing Quantum optimal control Hybrid systems Atomic molecular and optical physics 

References

  1. 1.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Schmiedmayer J., Folman R., Calarco T.: Quantum information processing with neutral atoms on an atom chip. J. Mod. Opt. 49(8), 1375–1388 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Rabl P., DeMille D., Doyle J.M., Lukin M.D., Schoelkopf R.J., Zoller P.: Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97, 033003 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Deutsch C., Ramirez-Martinez F., Lacroûte C., Reinhard F., Schneider T., Fuchs J.N., Piéchon F., Laloë F., Reichel J., Rosenbusch P.: Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105, 020401 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    DiVincenzo D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771 (2000)MATHCrossRefGoogle Scholar
  6. 6.
    Treutlein P., Steinmetz T., Colombe Y., Lev B., Hommelhoff P., Reichel J., Greiner M., Mandel O., Widera A., Rom T., Bloch I., Hänsch T.W.: Quantum information processing in optical lattices and magnetic microtraps. Fortschr. Phys. 54(8-10), 702–718 (2006)CrossRefGoogle Scholar
  7. 7.
    Andre A., DeMille D., Doyle J.M., Lukin M.D., Maxwell S.E., Rabl P., Schoelkopf R.J., Zoller P.: A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nat. Phys. 2(9), 636–642 (2006)CrossRefGoogle Scholar
  8. 8.
    Reichel, J., Vuletic, V. (eds): Atom Chips. Wiley-VCH Verlag, Weinheim (2011)Google Scholar
  9. 9.
    Chen G., Church D.A., Englert B.-G., Henkel C., Rohwedder B., Scully M.O., Zubairy M.S.: Quantum Computing Devices: Principles, Designs, and Analysis. Chapman & Hall/CRC Taylor & Francis Group, Boca Raton (2006)Google Scholar
  10. 10.
    Treutlein P., Hommelhoff P., Steinmetz T., Hänsch T.W., Reichel J.: Coherence in microchip traps. Phys. Rev. Lett. 92, 203005 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Lengwenus A., Kruse J., Volk M., Ertmer W., Birkl G.: Coherent manipulation of atomic qubits in optical micropotentials. Appl. Phys. B 86, 377 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Daley A.J., Boyd M.M., Ye J., Zoller P.: Quantum computing with alkaline-earth-metal atoms. Phys. Rev. Lett. 101, 170504 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Eckert K., Mompart J., Yi X.X., Schliemann J., Bruß D., Birkl G., Lewenstein M.: Quantum computing in optical microtraps based on the motional states of neutral atoms. Phys. Rev. A 66(4), 042317 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Mompart J., Eckert K., Ertmer W., Birkl G., Lewenstein M.: Quantum computing with spatially delocalized qubits. Phys. Rev. Lett. 90(14), 147901 (2003)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Cirone M.A., Negretti A., Calarco T., Krüger P., Schmiedmayer J.: A simple quantum gate with atom chips. Eur. Phys. J. D 35(1), 165–171 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Charron E., Cirone M.A., Negretti A., Schmiedmayer J., Calarco T.: Theoretical analysis of a realistic atom-chip quantum gate. Phys. Rev. A 74(1), 012308 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Jaksch D., Cirac J.I., Zoller P., Rolston S.L., Côté R., Lukin M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Mozley J., Hyafil P., Nogues G., Brune M., Raimond J.-M., Haroche S.: Trapping and coherent manipulation of a Rydberg atom on a microfabricated device: a proposal. Eur. Phys. J. D 35(1), 43–57 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Lukin M.D., Fleischhauer M., Cote R., Duan L.M., Jaksch D., Cirac J.I., Zoller P.: Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87(3), 037901 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Brion E., Mølmer K., Saffman M.: Quantum computing with collective ensembles of multilevel systems. Phys. Rev. Lett. 99, 260501 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Yan H., Yang G., Shi T., Wang J., Zhan M.: Quantum gates with atomic ensembles on an atom chip. Phys. Rev. A 78, 034304 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Verdú J., Zoubi H., Koller C., Majer J., Ritsch H.: Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. Phys. Rev. Lett. 103, 043603 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Tordrup K., Negretti A., Mølmer K.: Holographic quantum computing. Phys. Rev. Lett. 101(4), 40501 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Wesenberg J.H., Ardavan A., Briggs G.A.D., Morton J.J.L., Schoelkopf R.J., Schuster D.I., Mølmer K.: Quantum computing with an electron spin ensemble. Phys. Rev. Lett. 103(7), 070502 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Wu H., George R.E., Wesenberg J.H., Mølmer K., Schuster D.I., Schoelkopf R.J., Itoh K.M., Ardavan A., Morton J.J.L., Briggs G.A.D.: Storage of multiple coherent microwave excitations in an electron spin ensemble. Phys. Rev. Lett. 105, 140503 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Böhi P., Riedel M.F., Hoffrogge J., Reichel J., Hänsch T.W., Treutlein P.: Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip. Nat. Phys. 5(8), 592 (2009)CrossRefGoogle Scholar
  27. 27.
    Wineland D.J., Monroe C., Itano W.M., Leibfried D., King B.E., Meekhof D.M.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103(3), 259 (1998)Google Scholar
  28. 28.
    Mandel O., Greiner M., Widera A., Rom T., Hänsch T.W., Bloch I.: Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Schrader D., Dotsenko I., Khudaverdyan M., Miroshnychenko Y., Rauschenbeutel A., Meschede D.: Neutral atom quantum register. Phys. Rev. Lett. 93, 150501 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Nelson K.D., Li X., Weiss D.S.: Imaging single atoms in a three-dimensional array. Nat. Phys. 3, 556 (2007)CrossRefGoogle Scholar
  31. 31.
    Beugnon J., Tuchendler C., Marion H., Gaëtan A., Miroshnychenko Y., Sortais Y.R.P., Lance A.M., Jones M.P.A., Messin G., Browaeys A., Grangier P.: Two-dimensional transport and transfer of a single atomic qubit in optical tweezers. Nat. Phys. 3, 696 (2007)CrossRefGoogle Scholar
  32. 32.
    Lundblad N., Obrecht J.M., Spielman I.B., Porto J.V.: Field-sensitive addressing and control of field-insensitive neutral-atom qubits. Nat. Phys. 5, 575 (2009)CrossRefGoogle Scholar
  33. 33.
    Weitenberg C., Endres M., Sherson J.F., Cheneau M., Schauß P., Fukuhara T., Bloch I., Kuhr S.: Single-spin addressing in an atomic Mott insulator. Nature 471, 319 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Bakr W.S., Peng A., Tai M.E., Ma R., Simon J., Gillen J.I., Fölling S., Pollet L., Greiner M.: Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Morinaga M., Bouchoule I., Karam J.C., Salomon C.: Manipulation of motional quantum states of neutral atoms. Phys. Rev. Lett. 83(20), 4037–4040 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    Wang Y.-J., Anderson D.Z., Bright V.M., Cornell E.A., Diot Q., Kishimoto T., Prentiss M., Saravanan R.A., Segal S.R., Wu S.: Atom Michelson interferometer on a chip using a Bose–Einstein condensate. Phys. Rev. Lett. 94, 090405 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    Hofferberth S., Lesanovsky I., Fischer B., Verdu J., Schmiedmayer J.: Radiofrequency-dressed-state potentials for neutral atoms. Nat. Phys. 2, 710 (2006)CrossRefGoogle Scholar
  38. 38.
    Calarco T., Hinds E.A., Jaksch D., Schmiedmayer J., Cirac J.I., Zoller P.: Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps. Phys. Rev. A 61, 022304 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    Calarco T., Briegel H.-J., Jaksch D., Cirac J., Zoller P.: Quantum computing with trapped particles in microscopic potentials. Fortschr. Phys. 48(9-11), 945–955 (2000)CrossRefGoogle Scholar
  40. 40.
    Calarco T., Briegel H.-J., Jaksch D., Cirac J.I., Zoller P.: Entangling neutral atoms for quantum information processing. J. Mod. Opt. 47(12), 2137–2149 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  41. 41.
    Calarco T., Cirac J.I., Zoller P.: Entangling ions in arrays of microscopic traps. Phys. Rev. A 63, 062304 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    Petrov D.S., Shlyapnikov G.V., Walraven J.T.M.: Regimes of quantum degeneracy in trapped 1D gases. Phys. Rev. Lett. 85, 3745–3749 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    Negretti A., Calarco T., Cirone M.A., Recati A.: Performance of quantum phase gates with cold trapped atoms. Eur. Phys. J. D 32(1), 119–128 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Treutlein P., Hansch T.W., Reichel J., Negretti A., Cirone M.A., Calarco T.: Microwave potentials and optimal control for robust quantum gates on an atom chip. Phys. Rev. A 74(2), 022312 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    Riedel M.F., Böhi P., Li Y., Hänsch T.W., Sinatra A., Treutlein P.: Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    Böhi P., Riedel M.F., Hänsch T.W., Treutlein P.: Imaging of microwave fields using ultracold atoms. Appl. Phys. Lett. 97, 051101 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Lesanovsky I., Hofferberth S., Schmiedmayer J., Schmelcher P.: Manipulation of ultracold atoms in dressed adiabatic radio-frequency potentials. Phys. Rev. A 74(3), 033619 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Calarco T., Dorner U., Julienne P.S., Williams C.J., Zoller P.: Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions. Phys. Rev. A 70(1), 012306 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    Krotov V.F.: Global Methods in Optimal Control Theory, vol. 195. Marcel Dekker Inc., New York (1996)Google Scholar
  50. 50.
    Sklarz S.E., Tannor D.J.: Loading a Bose–Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation. Phys. Rev. A 66, 053619 (2002)ADSCrossRefGoogle Scholar
  51. 51.
    Charron E., Tiesinga E., Mies F., Williams C.: Optimizing a phase gate using quantum interference. Phys. Rev. Lett. 88, 077901 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    Birkl G., Fortágh J.: Micro traps for quantum information processing and precision force sensing. Laser Photon. Rev. 1(1), 12–23 (2007)CrossRefGoogle Scholar
  53. 53.
    Dumke R., Volk M., Müther T., Buchkremer F.B.J., Birkl G., Ertmer W.: Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits. Phys. Rev. Lett. 89, 097903 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    Bergamini S., Darquié B., Jones M., Jacubowiez L., Browaeys A., Grangier P.: Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator. J. Opt. Soc. Am. B 21, 1889–1894 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    Lengwenus A., Kruse J., Schlosser M., Tichelmann S., Birkl G.: Coherent transport of atomic quantum states in a scalable shift register. Phys. Rev. Lett. 105, 170502 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    Jaksch D., Briegel H.-J., Cirac J.I., Gardiner C.W., Zoller P.: Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999)ADSCrossRefGoogle Scholar
  57. 57.
    Jaksch D., Bruder C., Cirac J.I., Gardiner C.W., Zoller P.: Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998)ADSCrossRefGoogle Scholar
  58. 58.
    Greiner M., Mandel O., Esslinger T., Hänsch T.W., Bloch I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 39, 415 (2002)Google Scholar
  59. 59.
    Fisher M.P.A., Weichman P.B., Grinstein G., Fisher D.S.: Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546 (1989)ADSCrossRefGoogle Scholar
  60. 60.
    Bruder C., Fazio R., Schön G.: Superconductor Mott-insulator transition in Bose systems with finite-range interactions. Phys. Rev. B 47, 342–347 (1993)ADSCrossRefGoogle Scholar
  61. 61.
    Doria P., Calarco T., Montangero S.: Optimal control technique for many-body quantum dynamics. Phys. Rev. Lett. 106, 190501 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    Sherson, J., Mølmer, K.: arXiv:1012.1457v1Google Scholar
  63. 63.
    Finkelstein V., Berman P.R., Guo J.: One-dimensional laser cooling below the Doppler limit. Phys. Rev. A 45, 1829 (1992)ADSCrossRefGoogle Scholar
  64. 64.
    Briegel H.-J., Calarco T., Jaksch D., Cirac J.I., Zoller P.: Quantum computing with neutral atoms. J. Mod. Opt. 47(47), 415 (2000)MathSciNetADSGoogle Scholar
  65. 65.
    Singh M., Volk M., Akulshin A., Sidorov A., McLean R., Hannaford P.: One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip. J. Phys. B At. Mol. Opt. Phys. 41(6), 065301 (2008)CrossRefGoogle Scholar
  66. 66.
    Whitlock S., Gerritsma R., Fernholz T., Spreeuw R.J.C.: Two-dimensional array of microtraps with atomic shift register on a chip. New. J. Phys. 11, 023021 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    Christandl K., Lafyatis G.P., Lee S.-C., Lee J.-F.: One- and two-dimensional optical lattices on a chip for quantum computing. Phys. Rev. A 70, 032302 (2004)ADSCrossRefGoogle Scholar
  68. 68.
    Calarco T., Cirone M.A., Cozzini M., Negretti A., Recati A., Charron E.: Quantum control theory for decoherence suppression in quantum gates. Int. J. Quantum Inf. 5, 207 (2007)CrossRefGoogle Scholar
  69. 69.
    Chiara G.D., Calarco T., Anderlini M., Montangero S., Lee P.J., Brown B.L., Phillips W.D., Porto J.V.: Optimal control of atom transport for quantum gates in optical lattices. Phys. Rev. A 77, 052333 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    Sherson J.F., Weitenberg C., Endres M.C.M., Bloch I., Kuhr S.: Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68 (2010)ADSCrossRefGoogle Scholar
  71. 71.
    Bakr W.S., Gillen J.I., Peng A., Fölling S., Greiner M.: A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    Weitenberg, C., Kuhr, S., Mølmer, K., Sherson, J.: A quantum computation architecture using optical tweezers. arXiv:1107.2632v1Google Scholar
  73. 73.
    Brennen G.K., Caves C.M., Jessen P.S., Deutsch I.H.: Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060 (1999)ADSCrossRefGoogle Scholar
  74. 74.
    Colombe Y., Steinmetz T., Dubois G., Linke F., Hunger D., Reichel J.: Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272 (2007)ADSCrossRefGoogle Scholar
  75. 75.
    Pellizzari T., Gardiner S.A., Cirac J.I., Zoller P.: Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett. 75(21), 3788–3791 (1995)ADSCrossRefGoogle Scholar
  76. 76.
    Sørensen A.S., Mølmer K.: Measurement induced entanglement and quantum computation with atoms in optical cavities. Phys. Rev. Lett. 91, 097905 (2003)ADSCrossRefGoogle Scholar
  77. 77.
    Brion E., Mouritzen A.S., Mølmer K.: Conditional dynamics induced by new configurations for Rydberg dipole-dipole interactions. Phys. Rev. A 76, 022334 (2007)ADSCrossRefGoogle Scholar
  78. 78.
    Brion E., Pedersen L.H., Mølmer K.: Implementing a neutral atom Rydberg gate without populating the Rydberg state. J. Phys. B At. Mol. Opt. Phys. 40, S159 (2007)ADSCrossRefGoogle Scholar
  79. 79.
    Müller M., Lesanovsky I., Weimer H., Büchler H.P., Zoller P.: Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009)CrossRefGoogle Scholar
  80. 80.
    Møller D., Madsen L.B., Mølmer K.: Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100, 170504 (2008)CrossRefGoogle Scholar
  81. 81.
    Urban E., Johnson T.A., Henage T., Isenhower L., Yavuz D.D., Walker T.G., Saffman M.: Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009)CrossRefGoogle Scholar
  82. 82.
    Gaëtan A., Miroshnychenko Y., Wilk T., Chotia A., Viteau M., Comparat D., Pillet P., Browaeys A., Grangier P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)CrossRefGoogle Scholar
  83. 83.
    Isenhower L., Urban E., Zhang X.L., Gill A.T., Henage T., Johnson T.A., Walker T.G., Saffman M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    Goerz M.H., Calarco T., Koch C.P.: The quantum speed limit of optimal controlled phasegates for trapped neutral atoms. J. Phys. B At. Mol. Opt. Phys. 44, 154011 (2011)ADSCrossRefGoogle Scholar
  85. 85.
    Saffman M., Walker T.G., Mølmer K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010)ADSCrossRefGoogle Scholar
  86. 86.
    DeMille D.: Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002)ADSCrossRefGoogle Scholar
  87. 87.
    Lee C., Ostrovskaya E.A.: Quantum computation with diatomic bits in optical lattices. Phys. Rev. A 72, 062321 (2005)ADSCrossRefGoogle Scholar
  88. 88.
    Schoelkopf R.J., Wahlgren P., Kozhevnikov A.A., Delsing P., Prober D.E.: The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238 (1998)ADSCrossRefGoogle Scholar
  89. 89.
    Yelin S.F., Kirby K., Côté R.: Schemes for robust quantum computation with polar molecules. Phys. Rev. A 74, 050301 (2006)ADSCrossRefGoogle Scholar
  90. 90.
    Charron E., Milman P., Keller A., Atabek O.: Quantum phase gate and controlled entanglement with polar molecules. Phys. Rev. A 75, 033414 (2007)ADSCrossRefGoogle Scholar
  91. 91.
    Tesch C.M., de Vivie-Riedle R.: Quantum computation with vibrationally excited molecules. Phys. Rev. Lett. 89, 157901 (2002)ADSCrossRefGoogle Scholar
  92. 92.
    Sørensen A.S., van der Wal C.H., Childress L.I., Lukin M.D.: Capacitive coupling of atomic systems to mesoscopic conductors. Phys. Rev. Lett. 92, 063601 (2004)ADSCrossRefGoogle Scholar
  93. 93.
    Tian L., Rabl P., Blatt R., Zoller P.: Interfacing quantum-optical and solid-state qubits. Phys. Rev. Lett. 92, 247902 (2004)ADSCrossRefGoogle Scholar
  94. 94.
    Tordrup K., Mølmer K.: Quantum computing with a single molecular ensemble and a Cooper-pair box. Phys. Rev. A 77, 020301 (2008)ADSCrossRefGoogle Scholar
  95. 95.
    Kuznetsova E., Gacesa M., Yelin S.F., Côté R.: Phase gate and readout with an atom-molecule hybrid platform. Phys. Rev. A 81, 030301 (2010)ADSCrossRefGoogle Scholar
  96. 96.
    Trefzger C., Menotti C., Lewenstein M.: Pair-supersolid phase in a Bilayer system of dipolar lattice bosons. Phys. Rev. Lett. 103, 035304 (2009)ADSCrossRefGoogle Scholar
  97. 97.
    Kuznetsova, E., Rittenhouse, S.T., Sadeghpour, H.R., Yelin, S.F.: Rydberg atom mediated polar molecule interactions: a tool for molecular-state conditional quantum gates and individual addressability PCCP. Phys. Chem. Chem. Phys. (2011). doi:10.1039/c1cp21476d
  98. 98.
    Gehr R., Volz J., Dubois G., Steinmetz T., Colombe Y., Lev B.L., Long R., Estève J., Reichel J.: Cavity-based single atom preparation and high-fidelity hyperfine state readout. Phys. Rev. Lett. 104, 203602 (2010)ADSCrossRefGoogle Scholar
  99. 99.
    Herskind P.F., Wang S.X., Shi M., Ge Y., Cetina M., Chuang I.L.: Microfabricated surface ion trap on a high-finesse optical mirror. Opt. Lett. 36, 3045–3047 (2011)CrossRefADSGoogle Scholar
  100. 100.
    Stick D., Hensinger W.K., Olmschenk S., Madsen M.J., Schwab K., Monroe C.: Ion trap in a semiconductor chip. Nat. Phys. 2, 36 (2006)CrossRefGoogle Scholar
  101. 101.
    Schulz S., Poschinger U., Singer K., Schmidt-Kaler F.: Optimization of segmented linear Paul traps and transport of stored particles. Fortschr. Phys. 54, 648 (2006)CrossRefGoogle Scholar
  102. 102.
    Seidelin S., Chiaverini J., Reichle R., Bollinger J.J., Leibfried D., Britton J., Wesenberg J.H., Blakestad R.B., Epstein R.J., Hume D.B., Itano W.M., Jost J.D., Langer C., Ozeri R., Shiga N., Wineland D.J.: Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96(25), 253003 (2006)ADSCrossRefGoogle Scholar
  103. 103.
    Herskind P.F., Dantan A., Marler J.P., Albert M., Drewsen M.: Realization of collective strong coupling with ion Coulomb crystals in an optical cavity. Nat. Phys. 5, 494 (2009)CrossRefGoogle Scholar
  104. 104.
    Steffen M., Ansmann M., Bialczak R.C., Katz N., Lucero E., McDermott R., Neeley M., Weig E.M., Cleland A.N., Martinis J.M.: Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423 (2006)MathSciNetADSCrossRefGoogle Scholar
  105. 105.
    Majer J., Chow J.M., Gambetta J.M., Koch J., Johnson B.R., Schreier J.A., Frunzio L., Schuster D.I., Houck A.A., Wallraff A., Blais A., Devoret M.H., Girvin S.M., Schoelkopf R.J.: Coupling superconducting qubits via a cavity bus. Nature 449, 443 (2007)ADSCrossRefGoogle Scholar
  106. 106.
    Kubo Y., Ong F.R., Bertet P., Vion D., Jacques V., Zheng D., Dréau A., Roch J.-F., Auffeves A., Jelezko F., Wrachtrup J., Barthe M.F., Bergonzo P., Esteve D.: Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 140502 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Antonio Negretti
    • 1
    • 2
  • Philipp Treutlein
    • 3
  • Tommaso Calarco
    • 1
  1. 1.Institute for Quantum Information ProcessingUniversity of UlmUlmGermany
  2. 2.Lundbeck Foundation Theoretical Center for Quantum System Research, Department of Physics and AstronomyUniversity of AarhusAarhus CDenmark
  3. 3.Departement PhysikUniversität BaselBaselSwitzerland

Personalised recommendations