Quantum Information Processing

, Volume 11, Issue 6, pp 1371–1379 | Cite as

Existence of equilibria in quantum Bertrand–Edgeworth duopoly game

  • Yohei Sekiguchi
  • Kiri Sakahara
  • Takashi SatoEmail author


Both classical and quantum version of two models of price competition in duopoly market, the one is realistic and the other is idealized, are investigated. The pure strategy Nash equilibria of the realistic model exists under stricter condition than that of the idealized one in the classical form game. This is the problem known as Edgeworth paradox in economics. In the quantum form game, however, the former converges to the latter as the measure of entanglement goes to infinity.


Quantum game Bertrand–Edgeworth duopoly game Edgeworth paradox Continuous quantum variables Existence of Nash equilibria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Axelrod R.: The Evolution of Cooperation. Basic Books, New York (1984)zbMATHGoogle Scholar
  2. 2.
    Benjamin S.C., Hayden P.M.: Multiplayer quantum games. Phys. Rev. A 64(3), 30301 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Bertrand J.: Review of Théorie mathématique de la richesse sociale and Recherche sur les principes mathématiques de la théorie des richesses. J. Savant 67, 499–508 (1883)Google Scholar
  4. 4.
    Cournot A.: Researches into the Mathematical Principles of the Theory of Wealth. Macmillan, New York (1897)zbMATHGoogle Scholar
  5. 5.
    Dasgpta P., Maskin E.: The existence of equilibrium in discontinuous economic games, II: applications. Rev. Econ. Stud. 53(1), 27–41 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Du J., Ju C., Li H.: Quantum strategy without entanglement. J. Phys. A Math. Gen. 38(7), 1559–1565 (2005)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Du J., Li H., Ju C.: Quantum games of asymmetric information. Phys. Rev. E 68(1), 16124 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Edgeworth F.: La teoria pura del monopolio. Giornale Degli Economisti 40, 13–31 (1897)Google Scholar
  9. 9.
    Eisert J., Wilkens M., Lewenstein M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077–3080 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fellman, P.J.: The Nash equilibrium revisited: chaos and complexity hidden in simplicity. In: Proceedings of the 5th International Conference on Complex Systems (2004), preprint quant-ph/0707.0891v1 (2007)Google Scholar
  11. 11.
    Gibbons R.: Game Theory for Applied Economists. Princeton University Press, Princeton (1992)Google Scholar
  12. 12.
    Iqbal A.: Playing games with EPR-type experiments. J. Phys. A Mat. Gen. 38(43), 9551–9564 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Iqbal A., Toor A.H.: Quantum mechanics gives stability to a Nash equilibrium. Phys. Rev. A 65(2), 22306 (2002)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Iqbal A., Toor A.H.: Stability of mixed Nash equilibria in symmetric quantum games. Commun. Theor. Phys. 42(3), 335–338 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lee C.F., Johnson N.F.: Efficiency and formalism of quantum games. Phys. Rev. A 67, 022311 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Li H., Du J., Massar S.: Continuous-variable quantum games. Phys. Lett. A 306(2–3), 73–78 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lo C.F., Kiang D.: Quantum stackelberg duopoly. Phys. Lett. A 318(4–5), 333–336 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lo C.F., Kiang D.: Quantum oligopoly. Europhys. Lett. 64(5), 592–598 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Lo C.F., Kiang D.: Quantum Bertrand duopoly with differentiated products. Phys. Lett. A 321(2), 94–98 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lo C.F., Kiang D.: Quantum Stackelberg duopoly with incomplete information. Phys. Lett. A 346(1–3), 65–70 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Maynard-Smith J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)CrossRefzbMATHGoogle Scholar
  22. 22.
    Meyer D.A.: Quantum strategies. Phys. Rev. Lett. 82(5), 1052–1055 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nash J.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA. 36(1), 48–49 (1950)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Qin G., Chen X., Sun M., Du J.: Quantum Bertrand duopoly of incomplete information. J. Phys. A Math. Gen. 38(19), 4247–4253 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sekiguchi Y., Sakahara K., Sato T.: Uniqueness of Nash equilibria in a quantum Cournot duopoly game. J. Phys. A Math. Theor. 43, 145303 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tirole J.: The Theory of Industrial Organization. MIT Press, Cambridge (1988)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Graduate School of EconomicsUniversity of TokyoBunkyo-ku, TokyoJapan
  2. 2.Faculty of EconomicsToyo UniversityBunkyo-ku, TokyoJapan

Personalised recommendations