Advertisement

Quantum Information Processing

, Volume 11, Issue 2, pp 443–454 | Cite as

Decoherence and entanglement degradation of a qubit-qutrit system in non-inertial frames

  • M. Ramzan
  • M. K. Khan
Article

Abstract

We study the effect of decoherence on a qubit-qutrit system under the influence of global, local and multilocal decoherence in non-inertial frames. We show that the entanglement sudden death can be avoided in non-inertial frames in the presence of amplitude damping, depolarizing and phase damping channels at lower level of decoherence. However, degradation of entanglement is seen due to Unruh effect. It is seen that for lower values of decoherence, the depolarizing channel heavily degrades the entanglement as compared to the amplitude damping and phase damping channels. Entanglement sudden birth is also seen in case of depolarizing channel. However, for higher values of decoherence parameters, amplitude damping channel dominantly degrades the entanglement of the hybrid system. Entanglement sudden death is not seen for any value of acceleration of the accelerated observer “Rob” in case of phase damping channel. Further more, a symmetrical behaviour of negativity is seen for depolarizing channel.

Keywords

Quantum decoherence Entanglement Non-inertial frames 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peres A., Terno D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Boschi D., Branca S., De Martini F., Hardy L., Popescu S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Bouwmeester D., Ekert A., Zeilinger A.: The Physics of Quantum Information. Springer, Berlin (2000)zbMATHGoogle Scholar
  4. 4.
    Preskill J.: Reliable quantum computers. Proc. R. Soc. Lond. A 454, 385–410 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Ekert A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Grover L.K.: Quantum mechanics helps in search for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Yonac M. et al.: Sudden death of entanglement of two Jaynes–Cummings atoms. J. Phys. B 39, S621–S625 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Jakobczyk L., Jamroz A.: Noise-induced finite-time disentanglement in two-atomic system. Phys. Lett. A 333, 35–45 (2004)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Ann K., Jaeger G.: Local-dephasing-induced entanglement sudden death in two-component finite-dimensional systems. Phys. Rev. A 76, 044101 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Jaeger G., Ann K.: Disentanglement and decoherence in a pair of qutrits under dephasing noise. J. Mod. Opt. 54, 2327–2338 (2007)CrossRefGoogle Scholar
  11. 11.
    Yu T., Eberly J.H.: Qubit disentanglement and decoherence via dephasing. Phys. Rev. B 68, 165322 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Yu T., Eberly J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2007)CrossRefGoogle Scholar
  13. 13.
    Ficek Z., Tanas R.: Delayed sudden birth of entanglement. Phys. Rev. A 77, 054301 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Lopez C.E., Romero G., Lastra F., Solano E., Retamal J.C.: Sudden birth versus sudden death of entanglement in multipartite systems. Phys. Rev. Lett. 101, 080503 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Alsing P.M., Milburn G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Fuentes-Schuller I., Mann R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Alsing P.M., Fuentes-Schuller I., Mann R.B., Tessier T.E.: Entanglement of Dirac fields in non-inertial frames. Phys. Rev. A 74, 032326 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Ralph T.C., Milburn G.J., Downes T.: Quantum connectivity of space-time and gravitationally induced decorrelation of entanglement. Phys. Rev. A 79, 022121 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Doukas J., Hollenberg L.C.L.: Loss of spin entanglement for accelerated electrons in electric and magnetic fields. Phys. Rev. A 79, 052109 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Moradi S.: Distillability of entanglement in accelerated frames. Phys. Rev. A 79, 064301 (2009)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Martn-Martnez E., Len J.: Fermionic entanglement that survives a black hole. Phys. Rev. A 80, 042318 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Wang J., Deng J., Jing J.: Classical correlation and quantum discord sharing of Dirac fields in non-inertial frames. Phys. Rev. A 81, 052120 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Pan Q., Jing J.: Degradation of nonmaximal entanglement of scalar and Dirac fields in non-inertial frames. Phys. Rev. A 77, 024302 (2008)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Wang J., Pan Q., Jing J.: Entanglement redistribution in the Schwarzschild spacetime. Phys. Lett. B 692, 202 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Montero, M., Martin-Martinez, E.: The entangling side of the Unruh-Hawking effect. arXiv:quant-ph/1011.6540 (2011)Google Scholar
  26. 26.
    David E. et al.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)CrossRefGoogle Scholar
  27. 27.
    Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett 93, 140404 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Chan, k.W., Torres, J.P., Eberly, J.H.: Transverse entanglement migration in Hilbert space. Phys. Rev. A 75, 050101(R) (2007)Google Scholar
  29. 29.
    Wang J., Jing J.: Quantum decoherence in non-inertial frames. Phys. Rev. A 82, 032324 (2010)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Khan S., Khan M.K.: Open quantum systems in non-inertial frames. J. Phys. A: Math. Theor. 44, 045305 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Horodecki M., Horodecki P., Horodecki R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Ann K., Jaeger G.: Entanglement sudden death in qubit-qutrit systems. Phys. Lett. A 372, 579–583 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Unruh W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)ADSCrossRefGoogle Scholar
  35. 35.
    Leon J., Martin-Martinez E.: Spin and occupation number entanglement of Dirac fields for non-inertial observers. Phys. Rev. A 80, 012314 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Nielson M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  37. 37.
    Ann K., Jaeger G.: Finite-time destruction of entanglement and non-locality by environmental influences. Found. Phys. 39, 790 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Ramzan M., Khan S., Khan M.K.: Noisy non-transitive quantum games. J. Phys. A: Math. Theor. 43, 265304 (2010)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Salimi S., Soltanzadeh M.M.: Investigation of quantum roulette. Int. J. Quantum Inf. 7, 615–626 (2009)zbMATHCrossRefGoogle Scholar
  40. 40.
    Vidal G., Werner R.F.: A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations