Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantum circuits for spin and flavor degrees of freedom of quarks forming nucleons

  • 143 Accesses

  • 9 Citations

Abstract

We discuss the quantum-circuit realization of the state of a nucleon in the scope of simple simmetry groups. Explicit algorithms are presented for the preparation of the state of a neutron or a proton as resulting from the composition of their quark constituents. We estimate the computational resources required for such a simulation and design a photonic network for its implementation. Moreover, we highlight that current work on three-body interactions in lattices of interacting qubits, combined with the measurement-based paradigm for quantum information processing, may also be suitable for the implementation of these nucleonic spin states.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Greiner M., et al.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature (London) 415, 39 (2002)

  2. 2

    Hartmann M.J., Brandão F.G.S.L., Plenio M.B.: Quantum many-body phenomena in coupled cavity arrays. Laser Photon. Rev. 2, 527 (2008) and references therein

  3. 3

    Aspuru-Guzik A., et al.: Simulated quantum computation of molecular energies & towards quantum chemistry on a quantum computer. Science 309, 1704 (2005)

  4. 4

    Lanyon B.P., et al.: Towards quantum chemistry on a quantum computer. Nature Chem. 2, 106 (2009)

  5. 5

    Garay L.J., et al.: Sonic analog of gravitational black holes in Bose-Einstein condensates and methods for detecting acceleration radiation in a Bose-Einstein condensate and numerical observation of Hawking radiation from acoustic black holes in atomic Bose Einstein condensates. Phys. Rev. Lett. 85, 4643 (2000)

  6. 6

    Retzker A., et al.: ODouble well potentials and quantum phase transitions in ion traps. Phys. Rev. Lett. 101, 110402 (2008)

  7. 7

    Carusotto I., et al.: Numerical observation of Hawking radiation from acoustic black holes in atomic Bosef́bEinstein condensates. New J. Phys. 10, 103001 (2008)

  8. 8

    Chang D.E., et al.: Crystallization of strongly interacting photons in a nonlinear optical fibre. Nature Phys. 4, 884 (2008)

  9. 9

    Vaishnav J.Y., Clark C.W.: Observing zitterbewegung with ultracold toms & zitterbewegung of electronic wave packets in III-V zinc-blende semiconductor quantum wells. Phys. Rev. Lett. 100, 153002 (2008)

  10. 10

    Schliemann J., Loss D., Westervelt R.M.: Zitterbewegung of electronic wave packets in III-V zinc-blende semiconductor quantum wells. Phys. Rev. Lett. 94, 206801 (2005)

  11. 11

    Gerritsma R., et al.: Quantum simulation of the Dirac equation. Nature (London) 463, 68 (2010)

  12. 12

    Feynman R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

  13. 13

    http://www.wired.com/science/discoveries/news/2007/02/72734

  14. 14

    Buluta I., Nori F.: Quantum simulators. Science 326, 108 (2009)

  15. 15

    Halzen F., Martin A.D.: Quarks & Leptons: An Introductory Course in Modern Particle Physics. Wiley, New York (1984)

  16. 16

    Griffiths D.: Introduction to Elementary Particles. Wiley, New York (1987)

  17. 17

    Meshkov S., Levinson C.A., Lepkin H.J.: Verification of the tenfold assignment of the Baryon resonances & comparison of a new SU 3 prediction with experiment & Meson-Baryon scattering in the Quark Model. Phys. Rev. Lett. 10, 361 (1963)

  18. 18

    Meshkov S., Snow G.A., Yodh G.B.: Comparison of a new SU–3 prediction with experiment. Phys. Rev. Lett. 12, 87 (1964)

  19. 19

    Sastry C.V., Misra S.P.: Meson-Baryon scattering in the Quark Model. Phys. Rev. D 1, 166 (1970)

  20. 20

    Morpurgo G.: Smallness of gluon coupling to constituent quarks in baryons and validity of nonrelativistic quark model. Phys. Rev. D 46, 4068 (1992)

  21. 21

    Gell-Mann M.: A schematic model of Baryons and Mesons. Phys. Lett. 8, 214 (1964)

  22. 22

    Zweig, G.: Identifying phases of quantum many-body systems that are universal for quantum computation, CERN Reports No. TH-401 and TH-412, 1964 (unpublished)

  23. 23

    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

  24. 24

    Shende V., Bullock S., Markov I.: Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aid Design 25, 1000 (2006)

  25. 25

    Barenco A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

  26. 26

    Tseng C.H., et al.: Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer & quantum simulation of a system with competing two- and three-body interactions. Phys. Rev. A 61, 012302 (1999)

  27. 27

    Peng X., et al.: Phys. Rev. Lett.: Quantum simulation of a system with competing two-and three-body interactions 103, 140501 (2009)

  28. 28

    Pachos J.K., Plenio M.B.: Three-spin interactions in optical lattices and criticality in cluster hamiltonians & effective three-body interactions in triangular optical lattices. Phys. Rev. Lett. 93, 056402 (2004)

  29. 29

    Pachos, J.K., Rico, E.: Phys. Rev. A: Effective Three-Body Interactions in Traangular Optical Lattices 70, 053620 (2004)

  30. 30

    Briegel H.J., et al.: Measurement-based quantum computation. Nature Phys. 5, 19 (2009)

  31. 31

    Tame M.S., et al.: Natural three-qubit interactions in one-way quantum computing. Phys. Rev. A 73, 022309 (2006)

  32. 32

    Doherty A.C., Bartlett S.D.: Identifying phases of quantum many-body systems that are universal for quantum computation. Phys. Rev. Lett. 103, 020506 (2009)

  33. 33

    Here \({|001\rangle_{ijk}, |{010\rangle}_{ijk}}\) and \({|{100\rangle}_{ijk}}\) stand for a single photon in the spatial mode i,j and k respectively (i  =  1,4, j  =  2,5, k  =  3,6)

  34. 34

    Reck M., et al.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)

  35. 35

    Kalasuwan, P., et al.: A simple scheme for expanding photonic cluster states for quantum information & deterministic controlled-NOT gate for single-photon two-qubit quantum logic arXiv:1003.4291

  36. 36

    Fiorentino M., Wong F.N.C.: Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints. Phys. Rev. Lett. 93, 070502 (2004)

  37. 37

    Lu, C.-Y., et al.: Nature Phys.: Experiment entanglement of six photons in graph states. Nature Phys.: Experiment entanglement of six photons in graph states 3, 91 (2007)

  38. 38

    Wieczorek W., et al.: Experimental entanglement of a six-photon symmetric Dicke state. Phys. Rev. Lett. 103, 020504 (2009)

  39. 39

    Prevedel R., et al.: Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. Phys. Rev. Lett. 103, 020503 (2009)

  40. 40

    Radmark M., et al.: State-independent quantum contextuality with single photons. Phys. Rev. Lett. 103, 150501 (2009)

  41. 41

    Vallone G. et al.: Six-qubit two-photon hyperentangled cluster states: Characterization and application to quantum computation. Phys. Rev. A 81, 052301 (2010)

Download references

Author information

Correspondence to Fernando L. Semião.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Semião, F.L., Paternostro, M. Quantum circuits for spin and flavor degrees of freedom of quarks forming nucleons. Quantum Inf Process 11, 67–75 (2012). https://doi.org/10.1007/s11128-011-0232-3

Download citation

Keywords

  • Quantum simulator
  • Quark model