Quantum Information Processing

, Volume 10, Issue 5, pp 609–618 | Cite as

Investigating the implementation of restricted sets of multiqubit operations on distant qubits: a communication complexity perspective

  • Haozhen Situ
  • Daowen Qiu


We propose a protocol for Alice to implement a multiqubit quantum operation from the restricted sets on distant qubits possessed by Bob, and then we investigate the communication complexity of the task in different communication scenarios. By comparing with the previous work, our protocol works without prior sharing of entanglement, and requires less communication resources than the previous protocol in the qubit-transmission scenario. Furthermore, we generalize our protocol to d-dimensional operations.


Quantum communication Nonlocal operations Remote implementation Communication complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huelga S.F., Vaccaro J.A., Chefles A., Plenio M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Eisert J., Jacobs K., Papadopoulos P., Plenio M.B.: Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Collins D., Linden N., Popescu S.: Nonlocal content of quantum operations. Phys. Rev. A 64, 032302 (2001)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Yang C.P., Gea-Banacloche J.: Teleportation of rotations and receiver-encoded secret sharing. J. Opt. B: Quantum Semiclass. Opt. 3, 407 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Huelga S.F., Plenio M.B., Vaccaro J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Groisman B., Reznik B.: Implementing nonlocal gates with nonmaximally entangled states. Phys. Rev. A 71, 032322 (2005)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Chen L., Chen Y.X.: Probabilistic implementation of a nonlocal operation using a nonmaximally entangled state. Phys. Rev. A 71, 054302 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Ye M.Y., Zhang Y.S., Guo G.C.: Efficient implementation of controlled rotations by using entanglement. Phys. Rev. A 73, 032337 (2006)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Wang A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Rev. A 74, 032317 (2006)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    An N.B.: Remote application of hidden operators. Phys. Lett. A 364, 198 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Wang A.M.: Combined and controlled remote implementations of partially unknown quantum operations of multiqubits using Greenberger-Horne-Zeilinger states. Phys. Rev. A 75, 062323 (2007)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Zhao N.B., Wang A.M.: Hybrid protocol of remote implementations of quantum operations. Phys. Rev. A 76, 062317 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Zhao N.B., Wang A.M.: Local implementation of nonlocal operations with block forms. Phys. Rev. A 78, 014305 (2008)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Wu H.Z., Yang Z.B., Zheng S.B.: Entanglement-assisted quantum logic gates for two remote qubits. Phys. Lett. A 372, 2802 (2008)MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Yang C.P.: A new protocol for constructing nonlocal n-qubit controlled-U gates. Phys. Lett. A 372, 1380 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Yao, A.C-C.: Quantum circuit complexity. In: Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, pp. 352–361 (1993)Google Scholar
  17. 17.
    Cleve R., Buhrman H.: Substituting quantum entanglement for communication. Phys. Rev. A 56, 1201 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Alber, G., Delgado, A., Gisin, N., Jex, I.: Generalized quantum XOR-gate for quantum teleportation and state purification in arbitrary dimensional Hilbert spaces. arXiv: quant-ph/0008022 (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer ScienceSun Yat-sen UniversityGuangzhouChina
  2. 2.SQIG–Instituto de Telecomunicações, IST, TULisbonLisbonPortugal
  3. 3.The State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations