Advertisement

Quantum Information Processing

, Volume 10, Issue 3, pp 343–353 | Cite as

Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design

  • Vicky ChoiEmail author
Article

Abstract

In Choi (Quantum Inf Process, 7:193–209, 2008), we introduced the notion of minor-embedding in adiabatic quantum optimization. A minor-embedding of a graph G in a quantum hardware graph U is a subgraph of U such that G can be obtained from it by contracting edges. In this paper, we describe the intertwined adiabatic quantum architecture design problem, which is to construct a hardware graph U that satisfies all known physical constraints and, at the same time, permits an efficient minor-embedding algorithm. We illustrate an optimal complete-graph-minor hardware graph. Given a family \({\mathcal{F}}\) of graphs, a (host) graph U is called \({\mathcal{F}}\)-minor-universal if for each graph G in \({\mathcal{F}, U}\) contains a minor-embedding of G. The problem for designing a \({{\mathcal{F}}}\)-minor-universal hardware graph U sparse in which \({{\mathcal{F}}}\) consists of a family of sparse graphs (e.g., bounded degree graphs) is open.

Keywords

Adiabatic Quantum Computation Graph Minor Minor-Embedding Universal Graph Adiabatic Quantum Architecture Design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. In: Proceedings of the 45th FOCS, pp. 42–51 (2004)Google Scholar
  2. 2.
    Alon, N., Capalbo, M.: Optimal universal graphs with deterministic embedding. In: Proceedings of the 19th SODA (2008)Google Scholar
  3. 3.
    Bodlaender H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Boros E., Hammer P.: Pseudo-boolean optimization. Discrete Appl. Math 123, 155–225 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Boros, E., Hammer, P.L., Tavares, G.: Preprocessing of quadratic unconstrained binary optimization. Technical report RRR 10-2006, RUTCOR research report (2006)Google Scholar
  6. 6.
    Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7, 193–209, (2008). Available at arXiv:quant-ph/0804.4884Google Scholar
  7. 7.
    Choi, V.: Systems, devices and methods for analog processing. US Patent Application US2009/0121215, May 14, (2009)Google Scholar
  8. 8.
    Das A., Chakrabarti B.K.: Quantum annealing and analog quantum computations. Rev. Mod. Phys. 80, 1061–1081 (2008)CrossRefzbMATHADSMathSciNetGoogle Scholar
  9. 9.
    Diestel R.: Graph Theory. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  10. 10.
    D-Wave Systems Inc.: 100-4401 Still Creek Dr., Burnaby, V5C 6G9, BC, Canada. http://www.dwavesys.com/
  11. 11.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum Computation by Adiabatic Evolution. arXiv:quant-ph/0001106 (2000)Google Scholar
  12. 12.
    Farhi E., Goldstone J., Gutmann S., Lapan J., Lundgren A., Preda D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–476 (2001)PubMedCrossRefADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Harris, R., Johansson, J., Berkley, A.J., Johnson, M.W., Lanting, T., Han, S. et al.: Experimental Demonstration of a Robust and Scalable Flux Qubit. arXiv:quant-ph/0909.4321, (2009)Google Scholar
  14. 14.
    Kaminsky, W.M., Lloyd, S.: Scalable architecture for adiabatic quantum computing of NP-hard problems. Quantum Computing and Quantum Bits in Mesoscopic Systems, (2004)Google Scholar
  15. 15.
    Kaminsky, W.M., Lloyd, S., Orlando, T.P.: Scalable Superconducting Architecture for Adiabatic Quantum Computation. arXiv.org:quant-ph/0403090, (2004)Google Scholar
  16. 16.
    Kleinberg, J.M., Rubinfeld, R.: Short paths in expander graphs. In: Proceedings of the 37th FOCS (1996)Google Scholar
  17. 17.
    Markov, I.L., Shi, Y.: Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38(3), 963–981 (2008)Google Scholar
  18. 18.
    Mizel A., Lidar D.A., Mitchell M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99, 070502 (2007)PubMedCrossRefADSGoogle Scholar
  19. 19.
    Rezakhani A.T., Kuo W.-J., Hamma A., Lidar D.A., Zanardi P.: Quantum adiabatic brachistochrone. Phys. Rev. Lett. 103, 080502 (2009)PubMedCrossRefADSGoogle Scholar
  20. 20.
    Robertson N., Seymour P.D.: Graph minors. xiii: the disjoint paths problem. J. Comb. Theory Ser. B 63(1), 65–110 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Rose, G., Bunyk, P., Coury, M.D., Macready, W., Choi, V.: Systems, Devices, and Methods For Interconnected Processor Topology. US Patent Application US2008/0176750, July 24, (2008)Google Scholar
  22. 22.
    Thomson L.F.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo (1992)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer ScienceVirginia TechFalls ChurchUSA

Personalised recommendations