Quantum Information Processing

, Volume 10, Issue 3, pp 297–305 | Cite as

Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states

  • Yi-you Nie
  • Yuan-hua Li
  • Jun-chang Liu
  • Ming-huang Sang


A new application of the four-qubit cluster state is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. Muralidharan and Panigrahi (Phys Rev A 78:062333, 2008) argued that a four-qubit cluster state is impossible for QIS of an arbitrary two-qubit state. In this paper, we demonstrate that two four-qubit cluster states can be used to realize the deterministic QIS of an arbitrary three-qubit state by performing only the Bell-state measurements. Our scheme considered here is secure against certain eavesdropping attacks.


Quantum information Cluster state Quantum information splitting Arbitrary three-qubit state Bell-state measurement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett 70(13), 1895–1899 (1993)PubMedCrossRefzbMATHADSMathSciNetGoogle Scholar
  2. 2.
    Karlsson A., Bourennane M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394–4400 (1998)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Agrawal P., Pati A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74(6), 062320 (2006)CrossRefADSGoogle Scholar
  4. 4.
    Zhang B.B., Liu Y.: Economic and deterministic quantum teleportation of arbitrary bipartite pure and mixed state with shared cluster entanglement. Int. J. Theor. Phys 48(9), 2644–2651 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Nie Y.Y., Hong Z.H., Huang Y.B., Yi X.J., Li S.S.: Non-maximally entangled controlled teleportation using four particles cluster states. Int. J. Theor. Phys 48(5), 1485–1490 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Hillery M., Bužek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Karlsson A., Koashi M., Imoto N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)CrossRefADSGoogle Scholar
  8. 8.
    Cleve R., Gottesman D., Lo H.K.: How to share a quantum secret. Phys. Rev. Lett 83(3), 648–651 (1999)CrossRefADSGoogle Scholar
  9. 9.
    Murao M., Jonathan D., Plenio M.B., Vedral V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59(1), 156–161 (1999)CrossRefADSGoogle Scholar
  10. 10.
    Yan F.L., Wang D.: Probabilistic and controlled teleportation of unknown quantum states. Phys. Lett. A 316(5), 297–303 (2003)CrossRefzbMATHADSMathSciNetGoogle Scholar
  11. 11.
    Yang C.P., Chu S.I., Han S.Y.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70(2), 022329 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Man Z.X., Xia Y.J., An N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75(5), 052306 (2007)CrossRefADSGoogle Scholar
  13. 13.
    Deng F.G., Li X.H., Li C.Y., Zhou P., Zhou H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein Podolsky Rosen pairs. Phys. Rev. A 72(4), 044301 (2005)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Muralidharan S., Panigrahi P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Wang X.W., Yang G.J.: Generation of a four-particle cluster state and perfect teleportation of an arbitrary two-particle state in an ion-trap system. Commun. Theor. Phys 52(4), 588–592 (2009)CrossRefzbMATHADSGoogle Scholar
  16. 16.
    Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of quantum information using N-qubit linear cluster states. (2009)Google Scholar
  17. 17.
    Wang X.W., Peng Z.H., Jia C.X., Wang Y.H., Liu X.J.: Scheme for implementing controlled teleportation and dense coding with genuine pentaqubit entangled state in cavity QED. Opt. Commun. 282(4), 670–673 (2009)CrossRefADSGoogle Scholar
  18. 18.
    Hou K., Li Y.B., Shi S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283(9), 1961–1965 (2010)CrossRefADSGoogle Scholar
  19. 19.
    Muralidharan S., Panigrahi P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)CrossRefADSGoogle Scholar
  20. 20.
    Choudhury S., Muralidharan S., Panigrahi P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A 42(11), 115303 (2009)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Fang J.X., Lin Y.S., Zhu S.Q., Chen X.F.: Probabilistic teleportation of a three-particle state via three pairs of entangled particles. Phys. Rev. A 67(1), 014305 (2003)CrossRefADSGoogle Scholar
  22. 22.
    Lu H.: Probabilistic teleportation of the three-particle entangled state via entanglement swapping. Chin. Phys. Lett 18(8), 1004 (2001)CrossRefADSGoogle Scholar
  23. 23.
    Zhang Z.Y., Liu Y.M., Zuo X.Q., Zhang W., Zhang Z.J.: Transformation operator and criterion for perfectly teleporting arbitrary three-qubit state with six-qubit channel and bell-state measurement. Chin. Phys. Lett 26(12), 120303 (2009)CrossRefADSGoogle Scholar
  24. 24.
    Yang C.P., Guo G.C.: A proposal of teleportation for three-particle entangled state. Chin. Phys. Lett 16(9), 628 (1999)CrossRefADSGoogle Scholar
  25. 25.
    Briegel H.J., Raussendorf R.: Persistent entanglement in arays of interacting particles. Phys. Rev. Lett. A 86(5), 910–913 (2001)CrossRefADSGoogle Scholar
  26. 26.
    Dong P., Xue Z.Y., Yang M., Cao Z.L.: Generation of cluster states. Phys. Rev. A 73(3), 033818 (2006)CrossRefADSGoogle Scholar
  27. 27.
    Hein M., Dür W., Briegel H.J.: Entanglement properties of multipartite entangled states under the influence of decoherence. Phys. Rev. A 71(3), 032350 (2005)CrossRefADSGoogle Scholar
  28. 28.
    Schlingemann D., Werner R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65(1), 012308 (2001)CrossRefADSGoogle Scholar
  29. 29.
    Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett 86(22), 5188–5191 (2001)PubMedCrossRefADSGoogle Scholar
  30. 30.
    Walther P., Resch K.J., Rudolph T., Schenck E., Weinfurter H., Vedral V., Aspelmeyer M., Zeilinger A.: Experimental one-way quantum computing. Nature 434, 169–176 (2005)PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yi-you Nie
    • 1
    • 2
  • Yuan-hua Li
    • 1
  • Jun-chang Liu
    • 1
  • Ming-huang Sang
    • 1
  1. 1.Department of PhysicsJiangxi Normal UniversityNanchangChina
  2. 2.Key Laboratory of Optoelectronic & Telecommunication of Jiangxi ProvinceNanchangChina

Personalised recommendations