Quantum Information Processing

, Volume 9, Issue 5, pp 551–574 | Cite as

On time-reversal and space-time harmonic processes for Markovian quantum channels



The time reversal of a completely-positive, nonequilibrium discrete-time quantum Markov evolution is derived in a general framework via a suitable adjointness relation. Space-time harmonic processes are then introduced for the forward and reverse-time transition mechanisms, and their role in the study of quantum dynamics is illustrated by discussing (operator and scalar) relative entropy dynamics.


Quantum channel Time reversal Space-time harmonic process H-theorem 


  1. 1.
    Accardi L., Frigerio A., Lewis J.T.: Quantum stochastic processes. Publ. Res. Inst. Math. Sci. 18(1), 97133 (1982)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Araki H.: Relative entropy for states of von Neumann algebras. Publ. RIMS Kyoto Univ. 11, 809–833 (1976)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Barnum H., Knill E.: Reversing quantum dynamics with near-optimal quantum and classical fidelity. J. Math. Phys. 43(5), 2097–2106 (2002)CrossRefMathSciNetADSMATHGoogle Scholar
  4. 4.
    Bhatia R.: Matrix Analysis. Springer-Verlag, New York (1997)Google Scholar
  5. 5.
    Belavkin V.P., Staszewski P.: C*-algebraic generalization of relative entropy and entropy. Annales de l´Institute Henri Poincaré 37(1), 51–58 (1982)MathSciNetMATHGoogle Scholar
  6. 6.
    Blume-Kohout R., Ng H.K., Poulin D., Viola L.: The structure of preserved information in quantum processes. Phys. Rev. Lett. 100, 030501:1–030501:4 (2008)CrossRefADSGoogle Scholar
  7. 7.
    Bratteli O., Robinson D.: Operator Algebras and Quantum Statistical Mechanics, Volumes I and II, second edition. Springer-Verlag, Berlin (2002)Google Scholar
  8. 8.
    Brémaud P., Chains Markov: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer-Verlag, New York (1999)MATHGoogle Scholar
  9. 9.
    Crooks G.: Quantum operation time reversal. Phys. Rev. A 77, 034101:1–034101:4 (2008)ADSGoogle Scholar
  10. 10.
    Doob, J.L.: A markov chain theorem. Probability & statistics (The H. Cramér Volume), pp. 50–57, (1959)Google Scholar
  11. 11.
    Fuji J.I., Kamei E.: Relative operator entropy in noncommutative information theory. Math. Japon. 34, 341–348 (1989)MathSciNetGoogle Scholar
  12. 12.
    Hansen F., Pedersen G.K.: Jensen’s operator inequality. Bull. London Math. Soc. 35, 553–564 (2003)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Hiai F., Petz D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143, 99–114 (1991)CrossRefMathSciNetADSMATHGoogle Scholar
  14. 14.
    Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, New York (1990)MATHGoogle Scholar
  15. 15.
    Knill E., Laflamme R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Kraus K.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Lecture notes in Physics. Springer-Verlag, Berlin (1983)CrossRefGoogle Scholar
  17. 17.
    Kribs D.W., Spekkens R.W.: Quantum error correcting subsystems are unitarily recoverable subsystems. Phys. Rev. A 74, 042329 (2006)CrossRefADSGoogle Scholar
  18. 18.
    Kummerer B.: Quantum Markov Processes and Application in Physics, in Quantum Independent Increment Processes II, Lecture Notes in Mathemtics 1866. Springer Berlin, Heidelberg (2006)Google Scholar
  19. 19.
    Lindblad G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147–151 (1975)CrossRefMathSciNetADSMATHGoogle Scholar
  20. 20.
    Nelson E.: The adjoint markov process. Duke Math. J. 25, 671–690 (1958)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Nelson E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)MATHGoogle Scholar
  22. 22.
    Neveu J.: Discrete-parameter martingales. American Elsevier, North-Holland Amsterdam New York (1975)MATHGoogle Scholar
  23. 23.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002)Google Scholar
  24. 24.
    Nielsen M.A., Caves C.M., Schumacher B., Barnum H.: Information-theoretic approach to quantum error correction and reversible measurement. Proc. R. Soc. Lond. A 454, 266–304 (1998)MathSciNetGoogle Scholar
  25. 25.
    Parthasarathy K.R.: An Introduction to Quantum Stochastic Calculus. Birkhäuser-Verlag, Basel (1992)MATHGoogle Scholar
  26. 26.
    Pavon M.: Stochastic control and nonequilibrium thermodynamical systems. Appl. Math. Optimiz. 19, 187–202 (1989)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Pavon M., Ticozzi F.: Discrete-time classical and quantum Markovian evolutions: maximum entropy problems on path space. J. Math. Phys. 51, 042104 (2010)CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Petz D.: Characterization of the relative entropy of states of matrix algebras. Acta Math. Hung. 59, 449–455 (1992)CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Rudin W.: Real and Complex Analysis. McGraw-Hill, (1987)Google Scholar
  30. 30.
    Takesaki M.: Conditional expectations in von Neumann algebras. J. Funct. Anal. 9, 306321 (1972)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Ticozzi F., Viola L.: Quantum Information Encoding, Protection, and Correction from Trace-Norm Isometries. Phys. Rev. A 81(3), 032313 (2010)CrossRefADSGoogle Scholar
  32. 32.
    Uhlmann A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys. 54, 21–32 (1977)CrossRefMathSciNetADSMATHGoogle Scholar
  33. 33.
    Umegaki H.: Conditional expectations in an operator algebra iv (entropy and information). Kodai Math. Sem. Rep. 14, 59–85 (1962)CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Vedral V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74(1), 197–234 (2002)CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità di PadovaPadovaItaly
  2. 2.Dipartimento di Matematica Pura ed ApplicataUniversità di PadovaPadovaItaly

Personalised recommendations